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n	 INTRODUCTION

Tenofovir alafenamide (TAF) is the 2nd Tenofo-
vir (TFV) prodrug released into the interna-

tional market [1]. The term prodrug entails the 
fact that the molecule does not generate any sig-
nificant therapeutic effect in its original form but 
requires to be metabolically transformed to be-
came active. TFV is the molecular form undergo-
ing intracellular phosphorylation, the final meta-
bolic step required for the drug in order to com-
pete with natural phosphorylated substrates of 
viral reverse transcriptase [2]. In the initial phase 
of development it was soon found that TFV as 
such was not absorbed at the intestinal level and 
that suitable pharmaceutical formulations should 
have been devised to allow the drug to be devel-
oped for oral intake [3]. The 1st TFV prodrug to 
be clinically developed was Tenofovir disoproxil 
fumarate (TDF), that was released into the market 
in 2001 (USA) for the treatment of HIV infection 
[4] and in 2008 its use was also approved for the 
treatment of chronic HBV infection [5]. The deci-
sion to develop TAF inspite of years of worldwide 
successful TDF use was taken with the purpose of 
improving several aspects of the long-term safety 
of the drug [6]. 

n	 TENOFOVIR METABOLISM, 
PHARMACOKINETICS AND CLEARANCE

Although, by definition, the final product is the 
same, the clinical pharmacology of TFV is largely 
influenced by the prodrug considered. While both 
prodrugs, TDF and TAF, make the drug absorba-
ble from the intestine, once TFV is in the circula-
tion its distribution shows marked differences de-
pending on which of the two oral formulations is 

taken. Most of TFV absorbed following TDF oral 
intake (25% oral bioavailability) dissolves from 
its link with the disoproxil fumarate salt and is 
evenly distributed into a wide range of different 
tissues [7]. The reverse is true when TFV is tak-
en as TAF (40% oral bioavailability estimated), as 
the link with the alafenamide salt is stronger, and 
most of the drug circulates bound to it [8]. A ma-
jor property of TAF is that of driving a rather se-
lective distribution of TFV (Figure 1). Here comes 
the definition of “magic bullet”, as TFV when giv-
en as TAF undergoes a rather selective uptake by 
cells in which most of viral replication occurs. This 
applies both to the first-pass metabolism, where 
the carboxy-esterase 1(CES1)-rich hepatocytes are 
able to internalize the drug, and to the catepsin 
A (CatA) expressing PBMCs [8]. This selective 
distribution accounts for the much lower (25 mg) 
dose of TAF that is required to generate compara-
ble clinical antiviral effects as the standard 245 mg 
dose of TDF [9]. Such different distribution of TFV 
when given as TAF or TDF was first described 
in a pioneer study in 2005 by Lee and cowork-
ers, who compared the pharmacokinetics of TFV 
when administered by the intravenous route (IV, 
1 mg/kg bw) and by the oral route as TDF (245 
mg) and TAF (25 mg) [10]. While the highest plas-
ma AUC was measured in decreasing order for 
IV TFV (4800 ng/h/mL), TDF (1900 ng/h/mL) 
and TAF (16 ng/h/mL), the PBMC/plasma ratio 
showed the opposite order, with TAF achieving 
the highest value, 150, followed by TDF, 5 and IV 
TFV, 1. These relevant differences in terms of in-
tracellular distribution were mirrored by the EC50 
for HIV-1 (mM), that was as low as 0.005 for TAF, 
0.05 for TDF and as high as 5.0. for IV TFV [10]. 
The clinical relevance of these different values 
have been consistently confirmed in clinical stud-

TAF clinical pharmacology
Giovanni Di Perri
Infectious Diseases Unit, Department of Clinical Sciences, University of Torino, School of Medicine, Torino, Italy 
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ies. Plasma and intracellular pharmacokinetics of 
TFV was measured in 30 patients who switched 
from TDF- to TAF containing regimens and it was 
found that while TFV plasma concentrations de-
creased by 90% [TDF: 99.98 (2.24) ng/mL vs TAF: 
10.2 (1.6) ng/mL, p<0.001] following the switch 
to TAF, the white cell associated TFV-diphosphate 
(TFV-DP) increased 2.41 fold [TAF: 834.7 (2.49) vs 
TDF: 346.85 (3.75) fmol/106 cells, p=0.004] [11]. 
The main reason why TAF was clinically devel-
oped following the extensive and successful use 
of TDF was not however the higher intracellular 
penetration of TFV achieved by TAF intake but 
rather its much lower plasma pK exposure. The 
major clinical relevance of these findings, and 
specifically the negligible plasma pK exposure of 
TFV, is thus on the toxicity side as TAF has been 
consistently found to be associated to a much 
lower impact in terms of both renal toxicity and 
bone structural integrity as compared to its ances-
tor TDF [12-15]. 
The main difference in terms of clinical impact 
between TDF and TAF lies thus in the process of 
clearance of TFV, where the much lower plasma 
pK exposure of TFV when taken as TAF plays 
a key role in improving the safety profile of the 

drug. TFV is cleared by the renal route, with glo-
merular filtration accounting for approximately 
2/3 and secretion by the renal proximal tubule 
for the rest [16]. The amount of TFV escaping glo-
merular filtration reaches the epithelial cells of 
the proximal renal tubule by the efferent arteri-
oles. Uptake of TFV by these cells is efficient, but 
following internalization of the drug, the subse-
quent phase of apical secretion into the urine has 
a lower capacity, so that a variable amount of TFV 
tends to accumulate into proximal tubule epithe-
lial cells [17]. Although TFV was shown to have 
minimal mitochondrial toxicity, once the local 
concentration increases alteration in mitochondri-
al structure and function follow, with decrease in 
energy production by mitochondria resulting in 
lower efficiency of membrane transporters [18]. A 
vicious circle is thus generated with chronic im-
pairment of proximal tubule function. The latter 
can be measured by the capacity or reabsorbing 
low-molecular protein molecules, such as reti-
nol-binding protein (RBP) and b2-microglobulin. 
These two markers have been extensively used in 
clinical trials to demonstrate the lower proximal 
renal tubule reabsorbing efficiency in TDF vs TAF 
intakers, with unambiguous results consistently 

Tenofovir (TFV)

Disoproxil fumarate salt 

Wide spectrum 
of human cells

Clearance

Minor scission from the 
Alafenamide salt

CatA
(PBMCS)

CES1 
(Liver)

Tenofovir (TFV)

Alafenamide salt 

Selective cell uptake

Figure 1 - The different tenofovir (TFV) distribution following intestinal abosrption of Tenofovir disoproxil fuma-
rate (TDF) and Tenofovir alafenamide (TAF) id represented.
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showing a significantly higher preserved prox-
imal renal function in TAF recipients [12-15]. It 
must be noted that these markers of proximal tu-
bular function are rarely used in clinical practice, 
where creatininemia and creatinine-based calcu-
lation of glomerular filtration are more commonly 
measured. Creatinine renal clearance mainly oc-
curs by glomerular filtration (85%), with a minor 
contribution by proximal tubular secretion [16, 
19]. This explains why the increases in creatinine-
mia and parallel decreases in the estimated value 
of glomerular filtration are common occurrences 
in TDF-treated patients, but these markers actu-
ally underestimate the impact of TDF on renal 
proximal tubule function. In an horizontal clini-
cal study on 289 TDF-treated patients with steady 
normal creatinine values and a median exposure 
to TDF of 5.2 years, the measurement of the uri-
nary RBP/creatinine ratio showed that 54% of 
these patients had a reduced proximal tubule 
function inspite of normal creatinine values. As 
expected, these alterations were inversely pro-
portional to the TFV urinary concentration, thus 
testifying a reduced capacity of clearing the drug 
by tubular secretion [20]. 
A further difference between TDF and TAF that is 
also attributable to the lesser impact of the latter 
on renal function is the reduced impact of TAF on 
bone structural integrity. Lower reduction in bone 
mineral density (BMD) have been constantly de-
tected in TAF vs TDF intakers, possibly reflecting 
a reduced phosphate loss by the proximal renal 
tubule [12-15]. In clinical studies evaluating the 
effects of switching from TDF to TAF-containing 
regimens an increase in patients BMD has also 
been regularly measured [21, 22]. 
All this data points on the benefit associated to the 
lower plasma pK exposure of TFV when admin-
istered as TAF. Before the clinical development of 
TAF was completed, differences in terms of BMD 
were already seen in TDF recipients according to 
the companion drugs. Depending on the compan-
ion drugs, the pK plasma exposure of TFV in pa-
tients receiving TDF may significantly differ, with 
both efavirenz (EFV) and raltegravir (RAL) being 
associated to the lowest TFV concentrations [23]. 
In an equivalence clinical trial comparing daruna-
vir/ritonavir (DRV/r), atazanavir/ritonavir (AT-
V/r) and RAL, all associated to emtricitabine/
tenofovir (FTC/TDF), the lowest impact on BMD 
was seen in the RAL treatment arm [24], and this 

is in full accordance to pK clinical studies measur-
ing the TDF-associated TFV pK exposure accord-
ing to companion drugs [23, 25].

n	 CONCLUSIONS

It is thus the lower concentrations of TFV in plas-
ma that account for the significantly better safety 
profile of TFV, and to complete the TAF definition 
of “magic bullet”, the property of being less con-
centrated where potentially toxic (e.g. the plasma 
bathing the renal proximal tubule) well fits with 
its higher concentration into cells where HIV and 
HBV replicate.
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n	 BACKGROUND

The suppression of HIV-1 replication in treat-
ed patients is nowadays one of the biggest 

achievements of antiretroviral therapy. The com-
bination of different drugs in the so-called cART 
(combination antiretroviral therapy) has dramat-
ically reduced the overall incidence of mortality 
of HIV-infected individuals and delayed clinical 
disease progression [1]. 
Current cART is very effective in suppressing 
plasma virus levels to below the limit of detection 
(LLoD) of clinical commercial assays (20-50 cop-
ies HIV-1 RNA/mL), thus allowing the achieve-
ment of a nearly full control of virus replication 
and damage that it causes [2, 3]. Yet, the complete 
HIV-1 eradication from the infected individual 
(hence, “biological” cure), is still impossible, and 
this makes lifelong treatment an absolute necessi-
ty for every individual living with HIV [4-6].
With the aging of people living with HIV (PLWH), 
new sets of HIV-associated complications are 
emerging and contributing to the excess risk of 
non-AIDS events, leading to complications and/
or death. Among them, we count, beyond tradi-
tional risk factors not directly linked to HIV (such 
as substance abuse, obesity, and hypertension), 
some HIV-related alterations of homeostasis, such 
as chronic immune activation, and inflammation 
[7]. HIV-1 persistence appears to be a critical fac-
tor driving immune activation in the context of 
virological suppression [8], and a possible source 
of residual viremia in cART-treated patients.

n	 THE ORIGINS OF RESIDUAL HIV-1 VIREMIA

Residual viremia, defined by a measurement <50 
copies/mL with positive HIV-RNA PCR signal 

(so called detectable, not quantifiable viremia), is 
not a rare phenomenon in HIV-infected patients 
treated with ART. In real-life cohorts, steady-state 
VL was shown to be <3 copies/mL, though the 
proportion of patients with steadily-controlled 
viremia during follow-up ranges between 40.6% 
and 53.3% [9, 10].
Residual viremia can depend from 2, non mutual-
ly exclusive, functional models. The first suggests 
that residual viremia represents the product of on-
going viral replication, presumably from specific 
sites which are poorly reached by global cART 
penetration [11]. The second proposes that detect-
able residual viremia depends on the stable peri-
odic release of HIV-1 from latently infected cells, 
possibly due to antigenic stimulation [12]. In the 
latter case, HIV-1 persistence would be enhanced 
by cell-to-cell transmission of HIV-1 [13, 14]. Re-
gardless, these mechanisms are generally nonex-
clusive in the same individual, and may co-occur 
to different extents [15], thereby contributing to 
residual viremia. The same studies suggest that 
residual viremia can be produced by clonally ex-
panded cell(s) harbouring a resistant variant that 
escapes the immune clearance [16, 17].
Many studies aim to find how viral reservoirs 
establish in PLWH, and which mechanisms al-
low their persistence. Most infected cells harbour 
defective proviruses that, being unable to repli-
cate, are progressively lost during effective cART 
treatment [18, 19], as a result of lytic infection or 
elimination by cytotoxic T-lymphocytes (CTL). 
With our current knowledge, it is thus reasonable 
to affirm that these defective proviruses are inca-
pable of triggering viral rebound contributing to 
residual viremia. 
Intact proviruses, on other hand, are not necessar-
ily responsible for the maintenance of an active 
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reservoir, as often integrated into transcription-
ally silent genomic regions that maintains their 
“deeply” latent persistence [19, 20]. 
The active HIV reservoir as we know it is thus 
sustained by a small replication-competent pool 
of cells, that carry integrated provirus in genomic 
sites that allow reactivation and production of vi-
ral progeny [21].
On the other side of the coin, cART has demon-
strated a limited (if any) effect on viral transcrip-
tion of integrated viral genomes, reactivation of 
latent cells, and delimitation of the inflammation 
derived from chronic HIV replication. Chronic in-
flammation, together with the immune dysfunc-
tion, might enhance HIV persistence by generat-
ing new target cells and by increasing the prolif-
eration of infected cells; these two phenomena are 
mutually connected and act like a positive-feed-
back mechanism [22]. 

n	 HOW ANTIRETROVIRAL THERAPY  
CAN IMPACT RESIDUAL VIREMIA

During virological suppression induced by cART, 
plasma HIV-1 is reduced to levels undetectable by 
common commercial assays, whose lower limit of 
detection (LLoD) is usually 20-50 copies/mL.
The presence of this residual viremia (potential-
ly indicating an ongoing, low-level, viral repli-
cation), was shown to anticipate viral rebound 

in PLWH on cART [9, 23], and thus represent a 
critical virological factor to evaluate and monitor. 
All currently recommended initial cART regimens 
have excellent potencies, and a demonstrated 
outstanding ability of rapidly (and consistently) 
inhibiting viral replication, with N-years efficacy 
approaching N% [24-28]. Two treatment-related 
features contribute to the establishment, and per-
sistence, of residual and/or low-level viremia:
a)	 the ability to rapidly overcome viral replica-

tion once first-line treatment is initiated, there-
by reducing HIV-1 reservoir size;

b)	 the ability to guarantee a full suppression of 
viral replication on the long run. 

HIV-1 RNA suppression is dependent on baseline 
HIV-RNA levels and the type of regimen used. 
Past researches have shown that patients with a 
slower time to achieving <50 copies/mL are more 
likely to continue to have residual viremia [29], 
and when <50 copies/mL occurs >6 months after 
initiating cART, they have an almost 2-fold risk of 
subsequent virological rebound [30]. 
Once residual viremia is detected, no univocal 
treatment strategy has been shown to be more 
effective in lowering the HIV-RNA load to reach 
<20-50 copies/mL [31]. 
Adjunctive therapy capable of increasing CD4+ 
cell counts beyond levels achievable with cART 
alone has not been shown to decrease morbid-
ity or mortality. In addition, findings of several 
studies have shown that intensification of a sup-
pressive cART regimen with either the integrase 
inhibitor (INI) raltegravir, a boosted PI, efavirenz 
or maraviroc, does not alter the frequency of la-
tently infected cells or low-level viraemia [33, 
34-36]. Morón-López et al. observed a decrease 
in residual viremia after switching from PI-based 
to DTG-based regimen in a randomized clinical 
trial [37], but Rasmussen et al. concluded that the 
intensification of ART with DTG did not reveal 
or affect residual viremia in PLWH [38]. In the 
light of these contrasting results, intensification 
or modification of cART after viral suppression 
is not currently recommended as a strategy to re-
duce immune activation [32], even though further 
studies are definitively required, to assess this key 
point in a long-run period. 
In HIV-infected individuals the different frequen-
cy of detectable residual viremia is surely a com-
bination of several viral, treatment and clinical 
factors, including VL zenith, CD4 nadir, time un-Figure 1

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/369460
8/bin/nihms455845f2.jpghttps://www.ncbi.nlm.nih.gov/pmc/articles/ 

instance/3694608/bin/nihms455845f2.jpg
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Massanella et al. Curr Opin HIV AIDS 2016der viral suppression, pharmacokinetic character-
istics, adherence to therapy, and tolerability issues 
[39]. Excellent adherence to treatment is a critical 
determinant for the maintenance of optimal viro-
logical suppression.

n	 LABORATORY STRATEGIES  
TO EVALUATE RESIDUAL VIREMIA

Both total HIV-1 DNA and plasma HIV-1 RNA can 
be quantified to assess the success of cART and de-
fine HIV-1 persistence in different cellular types. 
Molecular assays are characterized by high sensi-
tivity and reproducibility, and are thus the most 
extensively used or such purpose.
A variety of commercial assays are available for 
quantitation of HIV-RNA in plasma. Of them, the 
reverse transcription (RT)-PCR assay is the only 
approved by the Food and Drug Administration 
(FDA), and the most widely used method for plas-
ma HIV-1 RNA quantification [42], while quantita-
tive PCR (qPCR) is traditionally used to measure 
the latent HIV-1 reservoir, represented by HIV-1 
DNA and cell-associated HIV-1 RNA [43-45].
Despite their sensitivity, versatility and ease of 
use, PCR-based assays have a main caveat in the 

unwarranted detection of defective integrated 
proviruses, and thus overestimation of function-
al HIV-1 reservoir. Many studies have proposed 
more accurate methods for the precise assessment 
of HIV-1 reservoir, able to separately quantify in-
tact and defective proviruses [45]. 
As PCR- or sequenced-based assays cannot prove 
replication-competence or inducibility of provi-
ruses, the qVOA still remains the gold standard 
for measuring replication-competent latent HIV in 
resting CD4+ T cells [60]. Traditional qVOA meth-
ods that include serial dilutions of CD4+ T-cells, 
stimulation with gamma-irradiated peripheral 
blood mononuclear cells (PBMCs), and ampli-
fication in allogeneic T-cell blasts from healthy 
donors are costly and time-consuming [47]. In 
addition, the assay requires weekly addition of 
HIV-negative allogeneic blasts, which limits the 
capacity of most laboratories to run qVOAs. 
In the setting of cART-treated patients, total HIV-
DNA and residual HIV-RNA quantification may 
support the evaluation of disease progression [47, 
48]. For this purpose, digital droplet PCR (ddPCR) 
is becoming a promising quantification strategy 
that combines absolute quantification with high 
sensitivity than real-time PCR [49, 50]. However, 

Figure 2

Massanella et al. Curr Opin HIV AIDS 2016.
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it is a non-standardized testing, not yet included 
in the recommendations for laboratory monitor-
ing of persons with HIV-1 by international guide-
lines [26, 32]. One of the potential applications 
of ddPCR is in the study of correlations among 
total HIV-DNA, plasma HIV-RNA, CD4+T cells 
and CD4/CD8 ratio during ART. In particular, in 
pre-ART phase, HIV-DNA level may predict long-
term virological success in patients starting their 
first-line ART [51-54]. Alteri et al. confirmed that 
pre-ART total HIV-DNA, normalized on CD4+T 
cells, is an excellent indicator of HIV-1 reservoir 
burden, residual viremia, and immune status. It 
also appears to be useful to predict the response 
to antiretroviral treatment since 6 months after vi-
rological success. Moreover, comparing virolog-
ical and immunological features of patients, the 
study highlighted a potential correlation between 
poor immunological reconstitution and residual 
viremia at success and 6 months after virological 
success [55]. 
Deeply understanding the factors responsible for 
HIV-1 replication despite cART, and identifying 
the cells harbouring the virus, represent major 
gaps that need to be filled. Suppressing the back-
ground inflammation could decrease the activa-
tion of the immune system and the related conse-
quences, whilst identifying reservoirs provide the 
chance to target them and reduce their burden. 
Recent advances in clinical practice and labora-
tory experience allow us to better examine the 
complexity of processes associated with this in-
fection. One of the main difficulties is dealing 
with the fact that we are moving in an extreme-
ly small field, since only a small percentage of 
cells harbour HIV, and an even smaller number 
of them are transcriptionally active. Researchers 
are using modern methods to obtain a larger pool 
of transcriptionally active cells Compared to what 
achieved until now. These methods include genet-
ically modified viruses, latency-reversing agents 
and cell lines transfected with the virus, having a 
larger percentage of transcriptionally active cells. 
Recently Leon-Rivera et al. used single-cell RNA 
sequencing (scRNAseq) to provide the first ex-
tensive characterization of HIV-positive mature 
monocytes with and without ART, and host-virus 
interactions directly affecting the monocyte tran-
scriptome, to reveal novel therapeutic targets for 
blocking formation and reseeding of viral reser-
voirs [56]. 

n	 CONCLUSIONS

In conclusion the residual viremia, despite cART, 
represents one of the major obstacle for HIV-1 
eradication, and it is recognized as a potential 
factor associated with persistent immune activa-
tion and inflammation, thus favouring disease 
progression in cART-treated patients [57]. In par-
ticular, viral persistence and residual inflamma-
tion are interdependent and fuel each other in a 
“vicious circle” that seems difficult to interrupt. 
Under these circumstances, despite the absence of 
specific recommendations regarding how to deal 
with this pathological situation, it is reasonable to 
consider that the maintenance of the maximum 
possible pressure over the virus during years, 
including after achieving undetectable viremia, 
represents an essential tool to decrease virus dam-
age to the lowest possible level. In this frame, the 
perfect adherence to therapy, together with the 
choice of drug regimens characterized by optimal 
efficacy against virus replication, represent still 
today, and today more than ever, elements of par-
amount importance to grant to PLWH the longest 
and most qualitative live possible.
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The natural history of HIV infection has been 
deeply modified by the development and in-

troduction of antiretroviral therapy. In optimal 
circumstances the life expectancy of persons liv-
ing with HIV infection is now approaching that 
of the general population. Following decades of 
debate concerning the immunological threshold 
when the treatment should be initiated, the 
START and Temprano clinical studies eventually 
demonstrated that significant improvements in 
terms of decrease of clinical progression and re-
duced death rate are recognizable even in pa-
tients who started treatment with CD4+ T-cell 
counts higher than 500/mL [1, 2]. This prompted 
international advisors to recommend the imme-
diate beginning of antiretroviral treatment re-
gardless the CD4+ T-cell count measured at HIV 
diagnosis. Besides these unambiguous experi-
mental clinical data, the benefit of an earlier start 
of antiretroviral therapy has been also conceptu-
alized as a measure to reduce HIV transmission 
according to the definition given by Julio Mon-
taner of “treatment as prevention” [3]. The presence 
of large numbers of HIV-infected persons with 
suppressed viraemia by antiretroviral therapy 
has been consistently found to be associated to 
the reduction of the so called “community viral 
load” and consequently to a diminished viral cir-
culation and decrease of new infections [4]. As 
soon as in 2007 the protection from new infec-
tions among sexual partners resulting from sup-
pressed viraemia was first described by Pietro 
Vernazza in the Swiss Statement  [5]. On this line, 
the confirming results by three subsequent clini-
cal studies, HPTN052 and PARTNER 1 and 2, led 
to the formulation of the nowadays popular 

equation known as undetectable = untransmissible, 
whose acronym is U = U [6-8]. The achievement 
of a steadily suppressed viraemia has also 
brought about a normalization of another aspect 
of patients’ life, such as the one concerning repro-
duction and vaginal delivery. The current coun-
selling about the rationale of receiving antiretro-
viral therapy thus includes all these issues, span-
ning from individual to public health issues. As a 
direct consequence of these properties, an imme-
diate start of antiretroviral therapy should be 
thus offered. The best evidence concerning the 
benefits of the adoption of the test & treat strategy 
mostly come from developing countries, but sim-
ilar results are also being generated in the USA 
[9-11]. It is intuitive that the critical moment to 
retain in care any new patient is right at the time 
of diagnosis and such strategy seems to have a 
significant impact as shown by a Cochrane me-
ta-analysis [12]. The relevance of this strategy 
may vary according to the geographical and soci-
oeconomic setting. In western countries, where 
most doctors customarily prefer to carry out an 
immunovirological evaluation before starting the 
treatment, the risk of losing a freshly diagnosed 
patient appears to be negligible. Such assumption 
is being however challenged by the COVID-19 
pandemic and its impact on health care organiza-
tion. The reduction in hospital-based assistance 
driven by both newly devised restrictions for 
hospital access and the associated general per-
ception of hospitals as risky environment, actual-
ly upgrade the appeal of a test & treat strategy. 
Beyond these mere organizational reasons, this 
issue requires to be analyzed under the doc-
tor-patient perspective. From a virological view-
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point, as shown by a study of the Italian ICONA 
cohort, the likelihood of achieving virologic sup-
pression might actually be similar when immedi-
ate and delayed (2 weeks) treatment start are 
compared [13]. However, it is my personal opin-
ion that the most relevant benefit of the test & 
treat strategy resides in the acceptance by the pa-
tient and Her/His overall perception of such ac-
celerated procedure linking expeditiously the di-
agnosis of HIV infection to its treatment. This is 
likely to be related to the critical emotional as-
pects generated by the beginning of antiretroviral 
therapy, with a switch from negative (e.g. fear) to 
positive insights concerning the patient’s expec-
tancies, as described by the Italian Diamante 
study presented at ICAR [14]. More recently these 
evolving expectancies and the wish to begin the 
antiretroviral treatment without any delay have 
also been reported by an American study [15]. It 
must be noted, however, that not all therapeutic 
regimens are equally suitable for such immediate 
strategy. This is mainly due to the lack of any ba-
sic immunovirological data on which basing the 
individualized choice of the most appropriate 
regimen. The first point here, in spite of a very 
low prevalence of transmissible drug resistance 
in Italy, concerns the risk of baseline mutations in 
the viral genome coding for reductions or loss of 
antiviral activity by specific drugs. A second chal-
lenge lies in the lack of knowledge of the initial 
viral load, a variable that might contraindicate 
the adoption of dual regimens. A third point is 
the possibility that the patient also harbors an ac-
tive HBV infection, a rather frequent finding in 
foreigner patients, whose treatment requires the 
introduction of an active drug with high genetic 
barrier like Tenofovir alafenamide (TAF). The last 
but not least issue here concerns the degree of im-
mune deterioration of the patient; should this 
variable be critically low (e.g. < 200 CD4+ T-cell/
mL), the choice of a dual regimens might be sub-
optimal, as shown by a negative trend seen in pa-
tients with baseline CD4+ T-cell/mL < 200 in the 
GEMINI studies (16). And it must be considered, 
especially in this COVID-19 pandemic, that the 
frequency of such low immune profile is rather 
frequent in newly diagnosed infections, often ex-
ceeding the 50%. These uncertainties, that are all 
present in a test & treat perspective, clearly drive 
the choice toward an initial triple regimen includ-
ing both TAF and an integrase inhibitor (INSTI). 

The test & treat or same-day ART is today also in-
cluded in the WHO treatment recommendations 
[17], mainly for organizational reasons, although 
in western countries it is fundamental to deliver 
any initial treatment by taking also into account 
the patients’ feelings by also offering this strategi-
cal opportunity.
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n	 INTRODUCTION

The term ‘forgiveness’ has entered the lexicon 
of HIV management.

Most pharmacological parameters in common us-
age can be defined with precision. 
In contrast, forgiveness currently lacks an estab-
lished, quantitative measure. Notwithstanding 
the lack of a specific forgiveness scale, the medical 
community has embraced the concept that some 
regimens are more forgiving of nonadherence 
than others, and this recognition influences thera-
peutic choices that are made every day clinics [1].
Forgiveness, like many properties related to anti-
microbial treatment, depends on pharmacologi-
cal, viral and host factors [1, 2].
In the following sections we try to answer to some 
key questions concerning definition, evaluation, 
and the role of forgiveness in the modern man-
agement of HIV-positive patients. 

n	 WHAT IS FORGIVENESS?

In the treatment of most chronic diseases, forgive-
ness increases in therapeutic importance and clin-
ical explanatory power as a patient’s dosing histo-
ry is increasingly interrupted by episodic lapses 
in dosing of varying lengths, creating pharma-
cokinetically corresponding gaps of low or unde-
tectable concentrations of drug in plasma [1]. 
From the pharmacokinetic perspective, most 
drugs in today’s pharmacopoeia have plasma 
half- life of 12 hours or less. When the dosing of 
these drugs is interrupted, their concentrations in 
plasma will, by the second day of lapsed dosing, 
have fallen far below the range prevailing during 
continuous dosing [2]. 
In other words, the circumstance of how sensi-

tive therapeutic success is under imperfect ad-
herence is driven by the property known as for-
giveness.

n	 THE RELATIONSHIP BETWEEN  
ADHERENCE AND FORGIVENESS

Medication adherence rate is typically defined as 
the proportion of doses taken as prescribed [2]. 
The adherence rate threshold is the minimum ad-
herence rate needed to maintain a therapeutic ef-
fect. Thus, if a drug is taken once daily for ‘N’ 
number of days, and ‘m’ is the number of missed 
doses, then: A = (N – m)/N [2].
The ‘forgiveness’, F, of a drug or regimen can be 
defined as the number of consecutive doses that 
can be missed while still maintaining the thera-
peutic drug effect. If D is the duration of the drug’s 
effect, and I is the dosing interval, then the for-
giveness of an ARV drug can be expressed as [2]: 

F = D – I 

Of note, this generic mathematical description of 
forgiveness does not describe the likelihood of 
drug resistance emerging in cases of loss of thera-
peutic effect – a key consideration when treating 
HIV and selecting a regimen.
The distribution pattern of missed doses may 
even be more important than the number of 
missed doses in deciding whether a therapeutic 
effect has been maintained (Figure 1). Thus, the 
therapeutic effect of a once-daily drug will likely 
be maintained if doses are not missed consecu-
tively (Figure 1A, patterns 2 and 3), but is at in-
creased risk of not being maintained if doses are 
missed consecutively (Figure 1A, pattern 4) [2]. 
Figure 1B illustrates the pharmacokinetic conse-
quences of different patterns of adherence for 25% 
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average non-adherence [3]; thus, an ARV with a 
long half-life may be necessary to avoid subthera-
peutic concentrations resulting from too-widely 
interspaced missed doses.
Kaufman et al [4] found that runs of >3 and >4 
consecutively missed doses occurred more fre-
quently than expected in the clinical setting lead-
ing to relatively long period with potential subop-
timal expoxure. 

n	 WHICH IS THE FORGIVENESS  
OF ANTIRETROVIRALS?

ARV forgiveness relates to the number of doses 
that can be missed without causing viral relapse.
Several properties of ARV drugs determine their 
forgiveness, especially pharmacokinetics and bar-
rier to resistance. Forgiveness in the context of 
missed doses is possible when either the elimina-
tion half-life of a drug or its inhibitory effect ex-
ceeds the recommended dosing interval [5].
The best data for estimating forgiveness of an an-
tiretrovirals regimen derive from ‘tail’ studies 
tracking drug elimination following treatment 
cessation in healthy volunteers where median 
time to reaching mimimum effective concentra-
tion (MEC) can be calculated. Tail data in healthy 
volunteers are available for different compounds, 
including coformulation with TDF/FTC [5-11].
Although MECs for NRTIs are not established, 
the pharmacokinetic parameters of the active in-
tracellular metabolites of tenofovir (given as TDF) 
and FTC have been established in one tail study, 
where both were found to have long terminal 
half-lives of 164 and 39 h, respectively (Figure 2)  
[10]. TDF and emtricitabine have been considered 
the antiretrovirals with longest intracellular half-
life  [12], suggesting a key role for forgiveness 
(Figure 3). This gives some reasurance that regi-
mens containing these long-acting NRTIs provide 
an element of forgiveness for late dosing. 

n	 FROM DRUG FORGIVENESS TO REGIMEN 
FORGIVENESS: A CONCEPTUAL EVOLUTION

TDF availability (along with FTC) can be consid-
ered a milestone of HAART history, making pos-
sible a new concept of backbone. 
It has been postulated  [13] if one drug in a regi-
men has a significantly longer half-life than oth-
ers, and all agents are missed then the patient will 

Figure 1

Figure 1

Figure 1 - Different patterns of missing doses (A) and 
different patterns for 25% average nonadherence and 
their pharmacokinetic consequences (B) (adapted from 
ref. 2 and 3).

A

B
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Figure 2 - Individual pre-
dicted intracellular tenofovir 
diphosphate (A) and emtric-
itabine triphosphate (B) con-
centrations over 168 h fol-
lowing drug intake cessation 
in healthy) The bold line rep-
resents the geometric mean 
concentration-time profile. 
(adapted from ref. 8).

Figure 3 - Comparison of plas-
ma and intracellular half-lives 
of different N(t)RTIs (ref. 9-11 ).

Figure 2

A

B

Figure 3
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be taking essentially ‘functional monotherapy’ 
after the shorter half-life drugs are eliminated 
(Figure 4a). The probability of resistance emerg-
ing will depend on: 
1.	 the drug’s genetic barrier; 
2.	 the magnitude of viral replication when the 

drug remains at a concentration capable of in-
ducing resistance;

3.	 the length of time the drug remains in the zone 
of resistance selection [13].

In the case of old short half-life NRTIs (AZT, d4T, 
ddI) associated with a low genetic barrier NNRTI, 
such as EFV, this could lead to virological failure 
with high probability of selection of resistance 
mutations to NNRTI. After adoption of TDF/FTC 
as a backbone, scenario 4a evolved in scenario 4d: 
the association of three drugs with relatively ‘bal-
anced’ long half-lives mantains therapeutic con-
centrations for a prolonged period of time after 
stopping these agents simultaneously [13]. This 
will provide a large degree of ‘forgiveness’ for 
missed doses, delaying the risk of virological fail-
ure and decrease the probability of selection of 
resistance mutations. In a clinical trial [14], devel-
opment of reverse transcriptase resistance was 
significantly lower among subjects receiving ei-
ther FTC + TDF + EFV as compared to the ones 
administred with 3TC + ZDV + EFV. 
Simultaneous missing of three drugs A, B and C 
with ‘balanced’ short half-lives was depicted in 
figure 4b (e.g. old short half-life NRTIs + PI) [13]. 
The degree of ‘forgiveness’ for missed doses will 
be low, but on stopping simultaneously the drugs 
may have cleared from the body before viral re-
bound occurs. The potential for resistance devel-
oping may be less than the scenario depicted in 
figure 4a. In the case of a similar third drug with a 
backbone with significantly longer half-life (as 
TDF/FTC), the degree of pharmacokinetic cover-
age maintained by the latter should increase the 
forgiveness of regimen and decrese the risk of vi-
rological rebound (figure 4c) [13]. This scenario 
can be representative of many modern HAART, 
including association with InSTI [11].
In a clinical study [15], although the gold-stand-
ard adherence threshold for older ARV regimens 
was been previously fixed to 95%, aa 80-90%, or 
maybe lower, adherence appeared sufficient to 
maintain virologic suppression in patients treated 
with TDF/FTC-containing regimen (plus EFV, 
DRV/r, or RAL).

n	 FROM TDF TO TAF-BASED REGIMENS: 
IMPLICATIONS FOR FORGIVENESS 

In another paper of this Journal issue, pharamaco-
logical differences between TDF and TAF are fully 
elucidated. TFV plasma concentrations has been 
shown to decrease by 90% and intracellular TFV-
DP concentrations to increase 2.41-fold in partici-
pants who were switched from TDF to TAF as 
part of routine clinical care [16]. The augmenta-
tion of intracellular persistence of TFV in PBMCs 
could theoretically further increase the magnitu-
do of forgiveness when dosed as TAF as com-
pared to TDF. Although no clinical study has so 
far specifically investigated this issue, also other 
recent findings could support a potential for such 
forgiveness increase.
The secondary lymphoid tissues (LT), lymph 
nodes (LN) and gut-associated lymphoid tissue 
are the primary sites of HIV replication and where 
the latent pool of virus is maintained [17].
Penetration of drugs into LTs depends on several 
physico-chemical characteristics including molec-
ular weight, ioniza-tion, dissociation constant 
(pKa), lipophilicity (logP), protein binding and 
particle size [17].
Studies in HIV-infected persons have shown low 
LN concentrations of some antiretroviral drugs 
and an association between low antiretroviral 
concentrations in LN and measures of persistent 
viral production.
TAF has greater stability than TDF in human plas-
ma and more efficiently delivers TFV to lymphoid 
cells and tissues that is facilitated also by efficient 
metabolism of TAF by cathepsin A, which is high-
ly expressed in lymphoid cells [18].
In a recently published [19] comparison of the LT 
pharmacokinetics of the intracellular pharmaco-
logic-active moiety, tenofovir-diphosphate, in 
HIV-infected persons following oral administra-
tion of tenofovir disoproxil fumarate (TDF) or 
tenofovir alafenamide (TAF), tenofovir-diphos-
phate concentrations in PBMCs and LN were 7.3-
fold and 6.4-fold higher, respectively, with TAF. 
The finding that TAF achieved higher LN concen-
trations of tenofovir-diphosphate provides the 
first human correlate of the observation in ani-
mals that TAF produced higher TFV LN concen-
trations[19]. 
The ability to improve pharmacokinetic condi-
tions in the LN allows investigations of whether 
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ARV regimens with enhanced LN concentrations, 
elicit a more complete virologic response, al-
though a focus on all lymphoid tissues is warrant-
ed, given they are where >98% of the reservoir 
resides.

n	 2DRS: FORGIVENESS WITHOUT TAF

A 2DR based on the INSTI dolutegravir (DTG) 
demonstrated noninferiority to a 3DR in a treat-
ment-naive population in the GEMINI-1 and 
GEMINI-2 studies [21]. DTG has a longer elimina-
tion half-life than EVG and RAL, suggesting that 
it may be more forgiving of missed doses [22]. 
The terminal elimination half-life of DTG is 
∼14.30 h compared with 12.9 h for EVG when 
boosted with cobicistat and 10-12 h for RAL [22] 
For BIC, the half-life reported in HIV-1-infected, 
treated, or INSTI-naive participants ranged from 
16 to 21 h [22].
Plasma concentrations of DTG were >2-fold high-
er than the IC90 for 72 h after the last dose, where-
as the concentration of EVG when boosted with 
cobicistat only exceeded the IC95 through 36 h, 
further supporting higher forgiveness of missed 
doses for DTG [22]. Combination therapy should 

include drugs with complementary pharmacoki-
netic profiles, such as those demonstrated for 
DTG and the pharmacologically active triphos-
phate form of 3TC, which have similar half-lives 
further supporting adequate maintenance of plas-
ma concentrations of DTG and intracellular 3TC-
TP for 3 days after the last dose (Figure 5).
However, forgiveness of 2DRs and TAF-based 
3DRs has not been so far fully compared.
In a post hoc analysis [23] of GEMINI studies a 
lower Week 48 virological response was observed 
in participants with < 90% adherence, but the im-
pact of lower adherence on viral success was simi-
lar in the DTG+3TC compared with DTG+TDF/
FTC arms. It is noteworthy, however, that a main 
limitation of the analysis is the small number of 
participants in the lower adherence subgroup (5% 
in both arms). In my opinion, definitive conclusion 
cannot be drawn, considering these trial conditions 
not fully representative of real life setting, in terms 
of heterogeneity of patients and high variability of 
compliance attitudes. In Figure 6, for example, 
some clinical scenarios of critical forgiveness, still 
not captured by clinical trials of 2DRs, is reported.
An interesting in vitro contribution comes from 
Mulato et al. [24]. HIV breakthrough experi-

Figure 4 - Pharmacokinetics 
of missed doses or stopping 
therapy of different regi-
mens. (a) Representation of 
three drugs A, B, and C with 
very disparate half lives, 
e.g. old NRTIs + EFV or NVP. 
(b) Simultaneous stopping 
of three drugs A, B and C 
with ‘balanced’ short half-
lives, e.g. old NRTIs + PI. (c) 
Simultaneous stopping of 
drugs A, B and C when drug 
A has a significantly shorter 
half-life than the other two 
agents, e. g. TDF/FTC + PI 
or InSTI. (d) Simultaneous 
stopping of three drugs 
with relatively ‘balanced’ 
long half-lives, e.g. TDF/FTC 
+ EFV of RPV. 

Figure 4
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ments simulated drug exposures at full adher-
ence or suboptimal adherence to BIC+FTC+TAF 
or DTG+3TC. Drug concentrations were deter-
mined using human plasma-free adjusted clini-
cal trough concentrations (Cmin), at simulated 
Cmin after missing 1 to 3 consecutive doses (Cmin 
- 1 or Cmin - 2, and Cmin 3) based on drug or active 
metabolite half-lives (Figure 7A). Cultures in-
fected with wild-type HIV-1 showed no viral 
breaktrough with BIC+FTC+TAF at drug con-
centration corresponding to Cmin, Cmin -1, or Cmin 
-2 but breakthrough did occur in 26 of 36 cultures 
at Cmin -3, where the M184V variant emerged in 

one culture. Experiments using DTG + 3TC pre-
vented most breakthrough at Cmin concentra-
tions (9/60 had breakthrough) but showed more 
breakthroughs as drug concentrations decreased 
(up to 36/36) (Figure 7B) and variants associat-
ed with resistance to both drugs. These results, 
however, need to be confirmed in the clinical 
setting. 

n	 CONCLUSIONS

Forgiveness is a key element for long term success 
of HAART. 

9

Figure 5
Figure 5 - The PK profiles of 
DTG and 3TC after interrup-
tion. 
Steady-state DTG and intra-
cellular 3TC-TP concentra-
tion-time profiles after ad-
ministration of DTG 50 mg 
or 3TC-TP 300 mg daily. BID, 
twice daily; conc, concen-
tration; DTG, dolutegravir; 
PA-IC90, protein-adjusted 
90% inhibitory concentra-
tion; QD, once daily; 3TC-
TP, lamivudine triphosphate 
(adapted from ref 22).

Figure 6 - Real life scenarios 
where comparative forgive-
ness of 2DRs and 3DRs still 
needs to be investigated.

11

• Naive pts with very high VLs and low CD4+

• Unavailability of GRT (e.g. rapid HAART)

• Pregnancy and other PK changes

• Confirmed or suspected (lack of GRTs) previous selection of 

resistance mutations (e.g. M184V , INI-R)

• Subjects at risk of low adherence

Figure 6
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Evolution of backbone from old NRTIs to modern 
N(t)RTIs, relying on compounds with long or 
very long half-life, as FTC and TDF/TAF, was a 
milestone of HAART history. This allowed not 
only the optimization of drug forgiveness but also 
the definition of regimen forgiveness as a new 
pharmacological perspective. TAF mantains, and 
probably improves, the key pharmacological 

characteristics of forgiveness attributed to TDF. 
Tha lack of TAF in 2DRs could be associated to a 
lower regimen forgiveness in several scenarios of 
low adherence, still not captured by clinical trials. 
Therefore, more clinical research is needed to 
characterise patients who should continue to ben-
efit of TAF-based regimens to support forgive-
ness. 

Figure 7 - Viral breakthrough assays using the drug combinations of BIC+FTC+TAF or DTG + 3TC were performed 
in parallel at fixed drug concentrations simulatingHuman plasma-free adjusted clinical trough concentrations 
(Cmin), at simulated Cmin after missing 1 to 3 consecutive doses (Cmin - 1 or Cmin - 2, and Cmin - 3). 
Time to viral breakthrough in MT-2 cells infected with wild-type HIV IIIB strain. Viral breakthrough selections for 
each drug combination were tested in replicate infected cultures in the presence of constant drug pressure for 
up to 32 days or until viral breakthrough was observed. The number of cultures with viral breakthrough based 
on the observed cytopathic effect was scored at each time point. Selections were performed at Cmin (minimum 
drug exposures based on in vivo pharmacokinetics), drug concentrations simulating Cmin minus 1 dose, Cmin 
minus 2 consecutive doses, and Cmin minus 3 consecutive doses (adapted from ref 24).
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Current treatment goals of antiretroviral thera-
py, such as viral suppression (below the most 

ambitious quantitative cutoff) and recovery and/
or maintenance of an effective immune function, 
are today relatively easy to achieve. The evolu-
tion of antiretroviral therapy has made available 
an increasing number of drugs with higher intrin-
sic activity and reduced toxicity, with excellent 
long-term performance. The fact that regimens 
consisting of two rather than three drugs have 
been formally approved for selected circumstanc-
es, well testifies the current standard of anti-HIV 
treatment [1]. In optimal therapeutic circumstanc-
es, particularly when the treatment is started very 
early in the course of HIV infection, the efficacy of 
antiretroviral therapy is such that the life expec-
tancy of patients may approach that of the general 
population [2]. 
As different from almost all infectious diseases, 
however, HIV infection requires the uninterrupt-
ed intake of antiretrovirals to prevent the resump-
tion of viral replication and the ensuing deteriora-
tion of immune function. While most AIDS-asso-
ciated disorders are prevented by regular intake 
of antiretroviral therapy, a number of non-AIDS 
heterogeneous diseases are nevertheless more 
common in HIV-infected subjects as compared to 
the general population, in spite of long-term viro-
logic suppression and full CD4+ T-cell recovery 
[3]. Neurocognitive impairment, higher cardio-
vascular risk and several neoplastic diseases have 
been listed among the AIDS-unrelated events 

that occur more frequently in successfully treated 
HIV-infected patients [4, 5]. This area of investi-
gation finds thus its rationale in the fact that an-
tiretroviral therapy might not restore completely 
the inflammatory/immune balance of patients in 
spite of persistent viral suppression. Although the 
magnitude of such residual vulnerability might 
also depend on the time when antiretrovirals are 
introduced along the natural course of HIV in-
fection [6], the finding of humoral and cellular 
signs of persistent inflammation and immune ac-
tivation may actually remain in most successfully 
treated individuals and provides a pathophysio-
logical link with disease forms that are less fre-
quent in the general population. 
The cascade of discoveries about the role of im-
mune activation in AIDS pathogenesis stems 
from the early times. In the very first description 
of patients with AIDS (well before HIV was rec-
ognized as the etiologic agent) increased levels of 
the surface activation marker formerly known as 
T10 (now called CD38) were reported on periph-
eral T-lymphocytes of AIDS patients [7]. 
Further to be repeatedly confirmed, it was subse-
quently found that the level of immune activation 
in patients with HIV infection was proportion-
ally associated to disease progression. Quantita-
tive expression of the immune activation marker 
CD38 was found to be even more accurate than 
CD4+ T-cell counts in predicting disease progres-
sion [8, 9]. 
The key role of immune activation in the progres-
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sion of HIV infection was further demonstrated 
in the SIV primate infection (Sooty mangabey), 
in which normal lymphocyte balance was main-
tained in spite of viral replication in CD4+ T-cells 
but with low levels of immune activation [10]. 
The mechanism leading to chronic immune ac-
tivation in HIV infection was unknown until in-
creased levels of LPS (lipopolysaccharide) were 
described in patients with HIV infection, possibly 
resulting from microbial translocation from the 
gastrointestinal tract [11]. 
Similar findings were also described in a different 
primate (Macacus rhesus) SIV infection, in which 
the degree of immune activation (both innate 
and adaptive) was associated with increased LPS 
levels. Disruption of the gastrointestinal barrier 
function, likely resulting from acute local CD4+ 
T-cell depletion, was thus hypothesized as a fun-
damental event in HIV pathogenesis [12]. The 
role of intestinal mucosal integrity in controlling 
immune activation has been recently confirmed in 
a further primate model (African green monkey) 
infected by SIV [13]. Regardless the hierarchy of 
the different factors contributing to immune ac-
tivation, the most accepted hypothesis is that the 
hyperactive inflammatory state of chronic HIV 
infection is associated to an increased turnover 
of activate naïve T-cells resulting in progressive 
T-cell depletion by apoptopic phenomena [6]. 
Along this line of research a fundamental change 
occurred when the key element of effective an-
tiretroviral therapy was introduced, thus rais-
ing the question about the effects of the latter on 
immune activation and chronic inflammation in 
patients who had no longer HIV-RNA detected 
in plasma and experienced a sustained immune 
recovery. Among the many investigations car-
ried in virologically suppressed patients, from 
a clinical standpoint the most striking evidence 
supporting a role of antiretroviral therapy in de-
creasing immune activation was provided by the 
SMART study in 2006. The trial compared a series 
of clinical endpoints and immunologic markers in 
patients receiving continuous vs interrupted ther-
apy and the main result consisted in an higher 
death rate due to non-AIDS events but secondary 
to immune activation in the arm receiving inter-
rupted treatment [14]. These findings point on the 
capacity of antiretroviral treatment to decrease 
the intensity of immune activation, as shown by 
significant drop of activation markers following 

successful introduction of antiretroviral therapy 
[15, 16]. In general, looking at different studies 
comparing healthy controls to HIV-infected pa-
tients characterized by a rather wide range of dif-
ferent immunovirologic conditions, higher levels 
of circulating soluble markers (and/or mediators) 
of immune activation and chronic inflammation 
have been recorded, such as IL-6 and sCD14, to-
gether with increased expression of CD38 and 
HLA-DR testifying activation of CD8+ T-cells, es-
pecially in case of patent viraemia and reduced 
immune recovery [6]. The overall picture how-
ever, is not straightforward as fluctuating levels 
of these indicators have been reported, although 
with a tendency to decrease when the immune-vi-
rologic balance improves. 
Many uncertainties however still remain on the 
pathogenesis of immune dysfunction in HIV in-
fection and alternative or additional mechanisms 
are being considered, such as the loss of selective 
CD4+ T-cell subpopulations or specific patterns 
of cytokine secretion like IL-6, that may also turn 
to have better predictive value on disease pro-
gression as compared to markers of T-cell activa-
tion [17]. 
The key question does thus remain as to what ex-
tent a successful antiretroviral treatment might 
impact in reducing this persistent background of 
noxious immune activation and chronic inflam-
mation. Such a question acquires further impor-
tance following the approval of dual antiretrovi-
ral therapy in patients fulfilling several immuno-
virological requirements. The two dual regimens 
so far approved (DTG/RPV and DTC/3TC) were 
found to determine a degree of both virologic 
suppression and immune reconstitution compa-
rable to that seen with triple regimens [18-20]. In 
practical terms the basic doubt concerns the pos-
sibility of a weaker effect on the reduction of im-
mune activation by a dual vs a conventional triple 
antiretroviral regimen. 
To have some insights on this issue we should 
look at the several attempts so far made on an-
tiretroviral monotherapy, which represents the 
lowest extreme in terms of number of drugs 
in a regimen [21-28]. Different monotherapies 
have been analyzed in terms of immune activa-
tion through the comparison with conventional 
triple regimens. It has been the case of boosted 
atazanavir or darunavir that were compared to 
triple regimens based on the same protease in-
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hibitor but also containing a double N/NtRTI 
backbone. Although virologic failure rates were 
generally higher in the monotherapy arms, anal-
yses were also focused on the subsets of mon-
otherapy patients with virologic suppression. 
While different markers of immune activation 
were measured in these studies, most of the 
evidence was in favour of a decreased effect of 
monotherapy in reducing inflammation and 
T-cell activation, T-cell apoptosis and monocyte 
activation markers were found to be increased in 
patients receiving monotherapy in spite of viro-
logic suppression. As a consequence, further to 
its lower virologic performance, monotherapy is 
today contraindicated also due to its reduced im-
pact on reduction of immune activation [1].
Looking at dual regimens, some work has been 
done with two-drug regimens before INSTIs-
based dual regimens were approved [29-32]. 
No striking findings were recorded over a series 
of small mono-arm or comparative studies in 
which dual regimens were based on PIs. In an 
Italian study virologic suppressed patients who 
were switched from triple regimens to a wide 
variety of dual combinations had a significant 
increase in CD8+ T-cell with proportional de-
creases in the CD4+/CD8+ T-cell ratio. It is note-
worthy that 45 out of a total of 104 patients who 
switched to dual regimens were taking INSTIs, 
but no separate analysis was made to look at a 
possible role of specific drugs included in dual 
regimens [33].
In the registration trials that actually promoted 
DTG/RPV as maintenance regimen and DT-
G/3TC as both initial and maintenance thera-
peutic options some attention was also paid to 
several markers of immune activation/hyperin-
flammation [18]. More data are actually needed 
to fully clarify this crucial point, particularly 
considering those patients who might lie in a 
borderline position as referred to the inclusion 
criteria for dual therapy as initial regimen (e.g. 
high baseline viral copies, baseline CD4+ T-cell 
count <200/mL) [19].
Beyond the still insufficient data available on 
immune activation, an additional good reason 
for fully considering this issue relies upon the 
hypothesis that some low-grade HIV replication 
persists in certain anatomical sites (central nerv-
ous system, lymph nodes, gastrointestinal tract) 
where no sufficient drug levels are achieved to 

fully inhibit viral replication [34]. It has been 
hypothesized that this residual viral production 
might be responsible for the persistence of im-
mune activation. The choice of administering 
two instead that three drugs might thus further 
impact on the degree of such hidden viral replica-
tion, with possible consequences in terms of per-
sisting inflammation. Again, also this hypothesis 
requires more clinical studies in order to be prop-
erly challenged.
The problem remains thus unresolved, but the 
therapeutic index of most options today includ-
ed in the current therapeutic armamentarium 
is actually much more favourable as compared 
to the times when the choice of a regimen im-
plied a much deeper scrutiny of possible short-, 
mid- and long-term consequences. Choosing a 
triple instead of a dual regimen does not imply 
today the same tolerability/toxicity scenarios we 
faced with several 1st generation drugs in older 
times and triple fixed combinations might con-
sist in a pill size that is indistinguishable from 
that of fixed dual regimens. The improvements 
achieved by most drug classes over the last dec-
ades allow today a much smoother choice, as 
first-line drugs are virtually devoid of any sig-
nature toxicity, lower dosages guarantee better 
antiviral effects, fewer are the drug-drug inter-
actions and no long-term untoward effects are 
reasonably expected.
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rell E, et al. Maintenance of virologic efficacy and de-
crease in levels of β2-microglobulin, soluble CD40L 
and soluble CD14 after switching previously treated 
HIV-infected patients to an NRTI-sparing dual therapy. 
Antiviral Res. 2014; 111: 26-32.
[30] Belmonti S, Lombardi F, Quiros-Roldan E, et al. 
Systemic inflammation markers after simplification to 
atazanavir/ritonavir plus lamivudine in virologically 



30 Giovanni Di Perri

suppressed HIV- 1-infected patients: ATLAS-M sub-
study. J Antimicrob Chemother. 2018; 73: 1949-54. 
[31] Vallejo A, Molano M, Monsalvo-Hernando M, et 
al. Switching to dual antiretroviral regimens is asso-
ciated with improvement or no changes in activation 
and inflammation markers in virologically suppressed 
HIV-1-infected patients: the TRILOBITHE pilot study. 
HIV Med. 2019; 20: 555-60. 
[32] Quiros-Roldan E, Magro P, Raffetti E, et al. Bio-
chemical and inflammatory modifications after switch-

ing to dual antiretroviral therapy in HIV-infected pa-
tients in Italy: a multicenter retrospective cohort study 
from 2007 to 2015. BMC Infect Dis. 2018; 18: 285.
[33] Mussini C, Lorenzini P, Cozzi-Lepri A, et al. Switch-
ing to dual/monotherapy determines an increase in 
CD8+ in HIV- infected individuals: an observational 
cohort study. BMC Med. 2018; 16: 79.
[34] Martinez-Picado J, Deeks SG. Persistent HIV-1 rep-
lication during antiretroviral therapy. Curr Opin HIV 
AIDS. 2016; 11: 417-23. 



31

Le Infezioni in Medicina, 2021, S3

The success of triple therapy in people living 
with HIV-1 infection (PLWH) has decreased 

mortality and improved life expectancies near to 
those of the general population in properly treat-
ed patients [1]. Virologically suppressed patients, 
usually defined by the presence of HIV-RNA <50 
copies/ml for at least 6 months, may switch from 
their ongoing regimen because of several reasons 
including documented toxicity, prevention of 
long-term toxicity, ageing and/or comorbidity, 
avoidance of drug-drug interactions, pregnan-
cy or wishing of pregnancy and protection from 
HBV replication. Moreover switching to another 
regimen may be proposed for simplication in or-
der to reduce the number of pills or the number 
of drugs in the regimen. The primary outcome 
when switching ARV therapy is to maintain viro-
logical suppression, but because PLWH are age-
ing and thus at increasing risk of chronic diseases 

and long-term complications, switching goals 
have to refocus not only on the primary oucome 
but also on the mitigation of adverse effects and 
long-term toxicities. Therefore current guidelines 
clearly recommend to properly evaluate the com-
plete clinical and antiretroviral history, hyper-
sensitivity or tolerability issues and cumulative 
genotypic resistance history before considering 
switching options. In this ever-changing sce-
nario, the avaliability of tenofovir-alafenamide 
(TAF)-based triple therapy, particularly within 
the single-pill fixed-dose combination (FDC) rep-
resents a significant step forward in terms of tai-
lored intervention.

n	 SWITCHING TO TENOFOVIR-ALAFENAMIDE 

A considerable amount of retrospective and pro-
spective data support switching to a TAF-based 
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Figure 1 - Mean percentage 
change from baseline to 
week 24 and 48 in hip bone 
mineral density (A) and
lumbar spine bone mineral 
density (B) by dual energy 
x-ray absorptiometry after 
switching to RPV/FTC /TAF.

Error bars show 95% CIs. RPV/
FTC/TAF=rilpivirine, emtricit-
abine, and tenofovir alafena-
mide.
RPV/FTC/TDF=rilpivirine, 
emtricitabine, and tenofovir 
disoproxil fumarate.

Adapted from C. Orkin, Lancet HIV 
2017.

Figure 1.Mean percentage change from baseline to week 24 and 48 in hip bone mineral density (A) and
lumbar spine bone mineral density (B) by dual energy x-ray absorptiometry after switching to RPV/FTC /TAF 

Error bars show 95% CIs. RPV/FTC/TAF=rilpivirine, emtricitabine, and tenofovir alafenamide.
RPV/FTC/TDF=rilpivirine, emtricitabine, and tenofovir disoproxil fumarate.

Adapted from C. Orkin , Lancet HIV 2017
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*Occurring in ≥5% of participants in either group.

Adapted from JM Molina, LANCET HIV 2018

Figure 2. Switching to fixed-dose bictegravir, emtricitabine, and tenofovir alafenamide from dolutegravir plus abacavir and
lamivudine in virologically suppressed adults with HIV-1. Summary of adverse events

triple therapy in virologically suppressed pa-
tients. In a randomized, double-blind study, [2] 
switching from single tablet rilpivirine, emtricit-
abine, tenofofovir disoproxil fumarate to rilpivir-
ine, emtricitabine and tenofovir alafenamide was 
associated with a low rate of virological failure 
(<1%), no evidence of treatment-emergent re-
sistance, a mild increase in cholesterol and try-
glicerides and a significant improvement in hip 
and spine bone mineral density (Figure 1). In the 
EMERALD study [3] switching to a single tablet 
regimen of darunavir, cobicistat, emtricitabine/ 
tenofovir alafenamide from boosted PI plus emtric-
itabine and TDF yelded similar 48 weeks efficacy 
results. Virological suppression was high, no pa-
tient discontinued because of virological failure 
and no drug resistance developed. A similar lipid 
change and an improved bone and renal biomark-
ers safety profile in comparison with the control 
group were observed. Switching to bictegra-
vir, emtricitabine and tenofovir alafenamide [4] 
maintained high rates of efficacy and was non-in-
ferior to remaining on dolutegravir, abacavir, and 
lamivudine. Both regimens were well tolerated, 
with fewer participants in the bictegravir group 
having drug related adverse events (Figure 2). At 
IAS 2021 the results of the open-label extension 
phase of this study where all the participants on 
DTG/ABC/3TC were switched to B/F/TAF were 
presented. The after a median B/F/TAF duration 
exposure of 96 weeks 98% of them had an HIV-
RNA <50 copies/ml at their last study visit [5]. 

Viral blips occurred infrequently and did not af-
fect virological outcome or emergence of drug-re-
sistance associated mutation
A large metanalysis including data from 14 clini-
cals trials (6), including switch trials and enrolling 
around 15.000 patients confirmed high and com-
parable levels of safety and efficacy of TAF and 
TDF overall. Where TAF and TDF were boosted 
by ritonavir or cobicistat, TAF showed significant-
ly higher rates of HIV-RNA suppression than TDF 
and lower risks of renal and bone-related adverse 
events [6-7] (Figure 3). There are still many gaps 
to be addressed : participants in the trials were rel-
atively young (average 39 years) with few comor-
bidities and there were also underrepresentation 
of women and non white population, moreover a 
follow-up of even 144 weeks in a study may not 
be enough time to observe major clinical events, 
therefore long-term follow-up is clearly needed. 
Nevertheless in order to fill these gaps new data 
are rapidly accumulating.
Evidence that bictegravir/emtricitabine/teno-
fovir alafenamide (B/F/TAF) is an effective and 
durable triple therapy switch option for black 
adults comes from BRAAVE 2020 Study, recently 
presented ayt IAS 2021 [8]. It is a phase 3 clinical 
trial designed with community input to evaluate 
the specific treatment responses of virologically 
suppressed adults living with HIV who self-iden-
tified as Black or African American following a 
switch to B/F/TAF from a variety of regimens. 
A total of 495 study participants were randomly 

Figure 2 - Switching to fixed-
dose bictegravir, emtricit-
abine, and tenofovir alafena-
mide from dolutegravir plus 
abacavir and lamivudine 
in virologically suppressed 
adults with HIV-1. Summary 
of adverse events. 

*Occurring in ≥5% of partici-
pants in either group.

Adapted from JM Molina, LANCET 
HIV 2018.
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allocated and treated in a 2:1 ratio to either switch 
to open-label B/F/TAF for up to 72 weeks (n=330) 
or to stay on a standard regimen of two nucleo-
side reverse transcriptase inhibitors (NRTIs) plus 
a third agent for 24 weeks with a delayed switch 
to B/F/TAF for up to 48 weeks (n=165). At 72 
weeks, 99% of participants (n=246/248, missing=-
excluded) who switched to B/F/TAF at the start 
of the study maintained an undetectable viral 
load regardless of age or sex at birth. These re-
sults provide further evidence that B/F/TAF is an 
effective and durable treatment option for black 
adults who are virologically suppressed. 
Long-term data from a small Phase 3b open-la-
bel trial [9] enrolling PLWH aged 65 and older who 
switched to B/F/TAF (n=86) from either E/C/F/
TAF or TDF based triple therapy, showed that 74% 
of participants (n=64/86) were able to maintain 
virologic suppression with no virological failures 
or emergent resistance through 96 weeks and that 
the rate of drug-related adverse events leading to 
study drug discontinuation in this fragile popula-
tion, in the setting of Covid-19 pandemic was low, 
around 3.5%. 
GS-US-380-1961 [10] is a 48 weeks, open label, in-
ternational randomized study where women of 
40 years were randomized to receive B/F/TAF 
or the maintain the ongoing regimen (E/C/F/
TAF 53%, E/C/F/TDF 42%, ATV+RTV + FTC/
TDF 5%). Non inferiority was confirmed (1.7% 
vs 1.7% of participants with HIV-RNA ≥50 cop-
ies/mL) and none receiving B/F/TAF developed 
treatment-emergent resistance. Because of neutral 
effect on bone and kidney, TAF-based triple ther-

apy could represent a proper switching option for 
use in pregnant as well in menopause women. Ini-
tial data suggest that TAF-based FDCs have high 
efficacy and low risk of adverse effects during 
pregnancy [11]. 
TAF-based triple therapy is a robust switching 
option for a consistent proportion of PLWH vi-
rologically suppressed, including patients with 
symptomatic advanced disease, those coinfected 
with HBV. 
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