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Abstract
Continued discovery and development of new antiviral medications are
paramount for global human health, particularly as new pathogens emerge and
old ones evolve to evade current therapeutic agents. Great success has been
achieved in developing effective therapies to suppress human
immunodeficiency virus (HIV) and hepatitis B virus (HBV); however, the
therapies are not curative and therefore current efforts in HIV and HBV drug
discovery are directed toward longer-acting therapies and/or developing new
mechanisms of action that could potentially lead to cure, or eradication, of the
virus. Recently, exciting early clinical data have been reported for novel
antivirals targeting respiratory syncytial virus (RSV) and influenza (flu).
Preclinical data suggest that these new approaches may be effective in treating
high-risk patients afflicted with serious RSV or flu infections. In this review, we
highlight new directions in antiviral approaches for HIV, HBV, and acute
respiratory virus infections.

 
This article is included in the F1000 Faculty

 channel.Reviews

 Wade Blair ( )Corresponding author: wade.blair@merck.com
 Blair W and Cox C.  How to cite this article: Current Landscape of Antiviral Drug Discovery [version 1; referees: 2 approved]

 2016, (F1000 Faculty Rev):202 (doi: )F1000Research 5 10.12688/f1000research.7665.1
 © 2016 Blair W and Cox C. This is an open access article distributed under the terms of the ,Copyright: Creative Commons Attribution Licence

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 The author(s) declared that no grants were involved in supporting this work.Grant information:

 Competing interests: The authors declare that they have no competing interests.

 22 Feb 2016, (F1000 Faculty Rev):202 (doi: ) First published: 5 10.12688/f1000research.7665.1

1 2

1

2

  Referee Status:

 Invited Referees

 version 1
published
22 Feb 2016

 1 2

 22 Feb 2016, (F1000 Faculty Rev):202 (doi: First published: 5
)10.12688/f1000research.7665.1

 22 Feb 2016, (F1000 Faculty Rev):202 (doi: Latest published: 5
)10.12688/f1000research.7665.1

v1

Page 1 of 7

F1000Research 2016, 5(F1000 Faculty Rev):202 Last updated: 22 FEB 2016

http://f1000research.com/channels/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
http://f1000research.com/articles/5-202/v1
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/channels/f1000-faculty-reviews
http://f1000research.com/channels/f1000-faculty-reviews
http://dx.doi.org/10.12688/f1000research.7665.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.7665.1
http://f1000research.com/articles/5-202/v1
http://dx.doi.org/10.12688/f1000research.7665.1
http://dx.doi.org/10.12688/f1000research.7665.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.7665.1&domain=pdf&date_stamp=2016-02-22


Introduction
Viruses are intracellular pathogens that have evolved many devi-
ous strategies to evade host immune responses and, as a conse-
quence, have plagued human health throughout history. Combating 
viral diseases with vaccines or antiviral drugs, or both, is a con-
stant challenge. Even when successful strategies are discovered 
and employed, the high rate of genetic change exhibited by many 
viruses, particularly RNA viruses, often enables drug resistance or 
vaccine escape. This is compounded by the periodic emergence of 
new viral pathogens. Therefore, the continued search for new anti-
viral approaches is a noble cause that is critical for global human 
health.

Over the last several decades, significant resources in academic 
and biotechnological/pharmaceutical research have been directed 
toward chronic viral infections such as HIV, HBV, and hepatitis C 
virus (HCV), resulting in breakthrough therapies that have had a 
major impact on these chronic diseases. In fact, HCV drug devel-
opment represents one of the greatest success stories in the his-
tory of antiviral therapy. Antiviral medications have been recently 
developed that can achieve a sustained viral response (SVR) (virus 
eradication or immune control of virus replication in the absence 
of continued therapy) in a majority of HCV-infected patients after 
short treatment durations1. No less impressive has been the advent 
of combination antiretroviral therapy (cART) that has transformed 
HIV from a death sentence into a chronic but manageable condi-
tion. Similarly, some of the same approaches taken for HIV have 
been applied to HBV, resulting in the development of nucleoside/
nucleotide analogues that effectively control viral replication and 
reduce the risk of HBV-associated disease, such as liver cirrhosis 
and hepatocellular carcinoma2. Although current therapies for HIV 
and HBV are effective for controlling viral replication, they do not 
achieve virus eradication or SVR, as is the case for HCV therapies. 
Therefore, HIV and HBV treatment strategies continue to evolve.

Tremendous efforts are currently being applied to eradication, or 
cure, of HIV3; however, this subject is beyond the scope of this 
review. In the absence of a viable cure for HIV, which even in the 
most optimistic view is still a decade away, the major unmet need 
in HIV treatment is to improve cART adherence. The prospect of 
lifelong therapy, combined with tolerability issues, leads to adher-
ence challenges for many patients. In fact, more than 40% of 
patients with HIV experience some level of non-adherence over 
time on therapy4, and this can lead to incomplete suppression of 
viral replication, emergence of drug resistance, and, ultimately, 
therapeutic failure. To address this issue, long-acting antiretrovi-
ral agents (e.g. cabotegravir and rilpivirine) are currently being 
advanced in the clinic with the hope that less frequent, or super-
vised, dosing may improve adherence to antiretroviral therapy or 
enable wider use of preventative treatment. Cabotegravir and rilpi-
virine target HIV integrase and reverse transcriptase, respectively, 
and are currently being studied in phase 3 clinical trials as a two-
drug combination for HIV maintenance therapy. The cabotegravir 
and rilpivirine regimen is administered once every 4 or 8 weeks 
as multiple intramuscular injections following full suppression 
on an oral regimen5. Recent data from the LATTE 2 trial showed 
that the injectable cabotegravir/rilpivirine combination maintained 
viral suppression rates comparable to a three-drug oral regimen of 

cabotegravir and two nucleoside reverse transcriptase inhibitors 
after 32 weeks6. Patient surveys have indicated enthusiasm for 
long-acting parental therapies in the HIV community7; however, it 
remains to be seen whether the reduction in dosing frequency and 
new administration route can improve adherence in certain patient 
populations. In addition, several questions remain about the potential 
liabilities of long-acting antiretrovirals, such as the risk of adverse 
events and drug resistance with prolonged exposure at subtherapeu-
tic levels in patients who exhibit periodic lapses in adherence.

Hepatitis B virus
HBV drug discovery efforts are currently geared toward increas-
ing SVR rates, defined for HBV as HBsAg loss/seroconversion 
and control of HBV viral load in the absence of therapy. Current 
standard of care for chronically infected patients with HBV (CHB) 
is nucleoside/nucleotide analogue therapy (e.g. entecavir) or inter-
feron (IFN). Nucleoside/nucleotide analogue therapy is highly 
effective at suppressing viral load, and a low percentage of treated 
CHB patients achieve SVR (<10%) after long-term treatment (2 to 
4 years)2. Similar rates of IFN-treated patients achieve SVR (<10%) 
after 48 weeks of treatment; however, IFN therapy is not well toler-
ated. Identification of direct-acting antivirals targeting new mecha-
nisms in the HBV replication cycle that could be combined with 
nucleoside/nucleotide analogues or IFN therapy (or both) to achieve 
increased SVR rates is one concept under current investigation.

The HBV capsid represents an emerging HBV target that is poten-
tially interesting. Originally, two classes of HBV capsid inhibitors 
were described: the heteroaryldihydropyrimidines (HAPs) and 
the phenylpropenamides8. Mechanistic studies revealed that HAP 
compounds increase the kinetics of assembly and stabilize HBV 
capsid dimer interactions, resulting in aberrant capsid assembly9,10. 
Similar to HAPs, phenylpropenamides (e.g. AT-130) accelerate 
capsid assembly; however, this class of compounds also blocks 
RNA packaging, resulting in the formation of empty capsids rather 
than misdirecting capsid assembly11. BAY 41-409, a member of the 
HAP class, demonstrated antiviral activity in an HBV transgenic 
mouse model and in humanized mice infected with HBV12,13. The 
disclosure of an HBV capsid/inhibitor X-ray cocrystal showed that 
the two classes of inhibitors shared overlapping binding sites on the 
HBV capsid14. Recently, additional classes of HBV capsid inhibi-
tors have been disclosed15,16, suggesting that the HBV capsid can be 
targeted by diverse chemical matter. In addition, capsid inhibitors 
with analogous activity have been identified for picornaviruses17, 
HIV8, and Dengue virus18, strongly suggesting that viral capsid pro-
teins may represent a viable target for a broad range of viruses. 
However, proof of concept (POC) in the clinic remains to be 
demonstrated.

Respiratory syncytial virus and flu
In addition to chronic viral infections, a great deal of preclini-
cal research has recently been focused on direct-acting antivirals 
against negative-stranded RNA viruses that cause respiratory infec-
tions, most notably for RSV and influenza (flu). Despite many 
years of intensive research efforts, there are very limited treatment 
options for these viral diseases that take their toll on the most sensi-
tive of patient populations: the very young, the very old, and the 
immunocompromised. The development of efficacious flu vaccines 
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has reduced morbidity and mortality in patients aged 6 months to 
65 years, but inability to treat infants and reduced efficacy in the 
elderly leave a significant gap in patient coverage. Additionally, 
in years where strain mismatch occurs (e.g. 2014), a significant 
increase in the number of flu-related hospitalizations and deaths 
is observed19. The currently available agents, which target either 
the neuraminidase enzyme or M2 protein, leave much to be desired 
in terms of efficacy, treatment window, and resistance profile. 
Our defense against RSV is even more sparse; there is no vaccine 
available, and ribavirin and palivizumab—Synagis (MedImmune, 
Gaithersburg, MD, USA), a monoclonal antibody (mAb) directed 
against the RSV fusion protein—are the only licensed agents for 
RSV; use of the former has been significantly reduced because of 
concerns over efficacy and toxicity, and the latter is approved only 
for prophylactic use in infants at highest risk.

The majority of reported drug discovery efforts against RSV over 
the past two decades have been focused on the F- (or fusion) pro-
tein, with multiple antibodies and small molecules, as well as a 
nanobody, entering development20; some of these agents have been 
halted for efficacy, safety, or strategic reasons, but several are pro-
gressing through the clinic as highlighted below. An X-ray crystal 
structure of the post-fusion F-protein became available in 201121, 
and it remains to be seen whether the structural insights gained have 
encouraged additional directed efforts at this validated target. Sev-
eral other viral proteins, including the N-protein and the G-protein, 
have been targeted by antibodies, small molecules, and the first anti-
viral small interfering RNA (siRNA)20. Inhibition of the L-protein, 
the RNA-dependent RNA-polymerase of RSV, seems an ideal tar-
get given its critical function in viral replication; however, little 
success has been realized prior to the 2014 disclosure of the leading 
L-protein inhibitor AL-8176 (vide infra). The recent disclosure of 
an RSV replicon assay22 and a screening cascade to identify RSV 
inhibitors in a target-agnostic fashion23 demonstrate the continued 
desire both in academia and in the pharmaceutical industry to dis-
cover novel mechanisms of action for the treatment of RSV.

In terms of small-molecule development, 2014 was a watershed year 
that witnessed the first human POC for two mechanisms of action: 
the fusion inhibitor GS-5806 (Gilead, Foster City, CA, USA)24 and 
the nucleoside inhibitor of the L-protein, AL-8176 (Alios, South 
San Francisco, CA, USA)25 both demonstrated efficacy in human 
challenge studies26,27. The compounds were well tolerated, reduced 
symptoms associated with disease, and dramatically decreased viral 
load; the Alios nucleoside reduced viral burden in nasal washes to 
undetectable levels, whereas the fusion inhibitor produced a 4-log 
drop in viral titer. One is tempted to speculate that targeting the 
L-protein may lead to better efficacy (as suggested by undetectable 
viral load in the challenge study) and a higher barrier to resistance 
than targeting surface interactions; additionally, according to Alios 
pipeline reports, AL-8176 is also being advanced for additional 
paramyxovirus infections of medical concern: parainfluenza virus 
and human metapneumovirus28. An agent such as this with broad- 
spectrum antiviral activity could be a true game-changer in the treat-
ment of respiratory virus infections in high-risk populations. Other 
agents currently in clinical trials include second-generation (more 
potent and half-life extended) mAb against F-protein, MEDI-8897, 
(MedImmune); REGN-2222, another anti-RSV F mAb, (Regeneron, 

Tarrytown, NY, USA); an inhaled nanobody from Ablynx (Ghent/
Zwijnaarde, Belgium), ALX-0171, directed against F-protein; 
and the inhaled siRNA from Alnylam (Cambridge, MA, USA), 
ALN-RSV01, that targets a conserved epitope on N-protein. Addi-
tionally, the F-protein inhibitor AK0529, from Ark Biosciences 
(Shanghai, China), recently completed phase 1 studies and is now 
undergoing phase 2 evaluation in hospitalized infants29. Given the 
high unmet medical need and several tractable, validated mecha-
nisms to target, we expect to see a continued high level of competi-
tion in the RSV space and are confident that novel agents will begin 
to arrive on the market in the near future.

Flu research has witnessed a recent surge in activity, and most 
efforts are focused on novel mechanisms of action that may have 
potential for improved efficacy, treatment window, and resistance 
profile when compared with neuraminidase or M2 protein inhibi-
tors. To this end, we feel that the brightest future lies in inhibi-
tion of one or more components of the viral polymerase complex. 
Unlike most negative-stranded RNA viruses, Orthomyxoviruses 
such as flu use a unique heterotrimeric polymerase complex com-
posed of the PA protein (endonuclease), the PB1 protein (the 
RNA-dependent RNA-polymerase, or RdRp), and the PB2 protein 
(cap-snatching subunit) that work together in a tightly associated 
and coupled fashion30. The past decade has seen significant advances 
in our understanding of the structure and function of the subunits 
of the polymerase complex, culminating in the recent elucidation of 
the full heterotrimeric polymerase complex of flu A31, flu B32, and 
flu C33 by X-ray crystallography. As is the case for targeting RSV 
polymerase, the flu polymerase complex is a compelling target for 
novel antivirals because of its role in not just reducing the spread of 
infection but also halting all intracellular replication; this may lead 
to an expanded window for intervention and reduced likelihood for 
the generation of drug-resistant viruses. Compounds targeting each 
of the three components of the polymerase have now reached the 
stage of clinical evaluation.

The most advanced compound is the PB1 inhibitor Favipiravir 
(T-705), which is approved for use against pandemic flu in Japan; 
additional clinical studies are ongoing around the world to study 
its safety and efficacy in the treatment of uncomplicated flu. The 
pyrazinecarboxamide of T-705 is converted to a nucleoside analog 
in vivo and is believed to act via incorporation into viral RNA by 
the PB1 RdRp; however, as with ribavirin, it is a non-specific nucle-
oside that is active against multiple viruses and has been shown to 
induce lethal mutagenesis in flu strains in vitro34. Favipiravir has also 
shown efficacy for Ebola infection in mouse models of disease35,36 

and was administered post-infection during the recent Ebola 
outbreak, where it showed some evidence of efficacy if administered 
prior to significant disease onset37. Development of nucleosides that 
specifically target the PB1 protein has been a substantial challenge 
in the field; however, a recent patent application from Riboscience 
(Palo Alto, CA, USA) suggests that potent and specific nucleosides 
for this purpose may be achievable38. The current stage of develop-
ment of these nucleoside analogs is unknown.

The most exciting development of the past several years has been 
identification of the first inhibitor of the cap-snatching function of 
the PB2 protein via a phenotypic screening approach39. In 2013, 
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Vertex (Boston, MA, USA) achieved POC in a human challenge 
study with their leading PB2 inhibitor, VX-787, wherein they dem-
onstrated significant reductions in viral load and symptom duration 
when drug was administered, beginning 24 hours after exposure 
to the virus, once a day for 5 days40. Preclinical data from a lethal 
mouse flu model indicate that VX-787 does indeed expand the treat-
ment window to 96 hours post-infection; in contrast, oseltamivir 
must be given within 48 hours to provide a measure of protection in 
this model41; however, delayed treatment efficacy has not yet been 
tested in humans. In June 2014, Janssen (Beerse, Belgium) entered 
into a collaborative agreement with Vertex to develop and com-
mercialize the renamed compound (JNJ-872). JNJ-872 has broad- 
spectrum activity against flu A strains but does not have activity 
against flu B. This observation can be readily explained by exami-
nation of the X-ray structure of JNJ-872 bound to the flu A PB2 
protein, wherein many of the amino acids in direct contact with the 
inhibitor are not conserved between the major flu A and B strains41. 
These structural data suggest that identification of a second- 
generation inhibitor that provides efficacy against both flu A and B 
will be very challenging to obtain within a similar binding motif. 
Roche (Basel, Switzerland) and a small biotech, Savira (Vienna, 
Austria), founded by the group that solved the full flu polymerase 
structures, partnered in 2013 to develop flu polymerase inhibitors, 
but their current stage of development is unknown.

The endonuclease function of the PA protein is the subunit with 
the longest history; the first inhibitors were reported by Merck 
(Kenilworth, NJ, USA) in the mid-1990s42. This enzyme uses a 
similar active site as HIV integrase; in fact, it was these early endo-
nuclease inhibitors that led Merck to identify, via high-throughput 
screening of their sample collection, the key pharmacophore that has 
supplied all of the chemical matter advanced to date for the integrase 
enzyme, including the three US Food and Drug Administration- 
approved integrase inhibitors. The challenging pharmaceutical 
properties of small molecules required to inhibit endonuclease has 
likely slowed progress, but advances in HIV integrase compound 
design, as well as X-ray elucidation of the PA subunit in complex 
with inhibitors43,44, may have informed researchers how to make 
more drug-like endonuclease inhibitors. In fact, two companies 
have endonuclease inhibitors in clinical stage evaluation: Shionogi 
(Osaka, Japan) has demonstrated safety and acceptable pharma-
cokinetics of S-033188 in a phase 1 study in Japan45, and Janssen 
(through their acquisition of AL-794 from Alios) has an endonucle-
ase inhibitor currently in phase 1 clinical studies in healthy volun-
teers in the US46. Though there is not yet POC for this mechanism, 
endonuclease’s vital function in the polymerase complex makes its 
clinical success highly probable. Furthermore, there is very high 
homology between flu A and B in the endonuclease active site, sug-
gesting that this could be a better target than the currently identified 
site on PB2 to obtain broad-spectrum flu activity. If Janssen’s endo-
nuclease compound AL-794 advances, they could be in a position 
to test combinations with JNJ-872 as early as 2017, providing the 
first look at the potential synergy in combining the inhibition of two 
separate components of the polymerase complex.

Utilization of broadly neutralizing mAbs targeting the Flu hemag-
glutinin (HA) protein represents a separate approach to develop flu 

therapeutics. With advances in technologies to isolate antibodies 
directly from human B cells, many anti-flu HA mAbs with broad neu-
tralizing activity have been identified47–54. Several such mAbs—FI6, 
CR9114, and 39.29 (MHAA4549A)—that target the highly con-
served stem region of HA demonstrate potent activity against all, 
or nearly all, flu A strains tested51,53,54. One potential indication of 
interest is the utilization of flu mAbs to treat patients hospitalized 
with severe flu infection. Preclinical animal models indicate that 
flu mAbs exhibit superior efficacy compared with oseltamivir in 
mouse or ferret models of lethal flu infection when treatment is ini-
tiated later in infection54. Multiple mechanisms of antiviral activity 
have been described for flu mAbs, including Fc effector function- 
mediated activity55, providing some rationale for the improved 
activity observed in preclinical models. MHAA4549A is currently 
being developed in the clinic and has demonstrated POC in a human 
challenge study; however, the dose required for efficacy was high 
(3.6 grams). Despite the high dose requirements, MHAA4549A is 
progressing to phase 2 trials in hospitalized patients and will test the 
utility of HA stem-binding mAbs in this at-risk population. A sec-
ond HA stem-binding mAb currently being developed by Visterra 
(Cambridge, MA, USA), VIS410, also recently demonstrated POC 
in a human challenge study at a similar high dose (2.3 grams)56.

Conclusion
Though some pharmaceutical companies have recently announced 
a reduction or elimination of their efforts toward antiviral drug dis-
covery, the future of research in this area remains bright; several 
large companies, as well as many biotechnology companies and 
academic researchers, are pushing the frontiers of knowledge and 
unearthing new approaches to combating viral infections. Along 
with the exciting future in new treatments for HIV, HBV, RSV, 
and flu highlighted above, nascent reports suggest that tractable 
approaches to treat viral diseases such as norovirus, Dengue, and 
Ebola are also within reach. Furthermore, the largely unexplored 
and poorly understood area of targeting the host immune system 
and harnessing its power to clear viral infections is gaining trac-
tion, and we are hopeful that such an approach may one day allow 
the discovery of heretofore unknown single agents that have the 
potential to cure diseases caused by a broad range of genetically 
distinct viruses57.
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