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Abstract: Carbapenem resistance, mainly among Gram-negative pathogens, is an ongoing
public-health problem of global dimensions. This type of antimicrobial resistance, especially
when mediated by transferable carbapenemase-encoding genes, is spreading rapidly causing
serious outbreaks and dramatically limiting treatment options. In this article, important key
points related to carbapenem resistance are reviewed and future perspectives are discussed.
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Introduction
Beta-lactams are by far the most used antibiotics

worldwide and include the penicillins, cephalo-

sporins, monobactams and carbapenems. They

all share a common beta-lactam ring and act

similarly by binding to and inactivating the

penicillin-binding proteins (PBPs), which are

responsible for the formation of the bacterial

cell wall.

Carbapenems, among the beta-lactams, are the

most effective against Gram-positive and Gram-

negative bacteria presenting a broad spectrum of

antibacterial activity. Their unique molecular

structure is due to the presence of a carbapenem

together with the beta-lactam ring. This combin-

ation confers exceptional stability against most

beta-lactamases (enzymes that inactivate beta-

lactams) including ampicillin and carbenicillin

(AmpC) and the extended spectrum beta-lacta-

mases (ESBLs).

As they are highly effective against many

bacterial species and less vulnerable to most

beta-lactam resistance determinants, carbape-

nems are considered to be the most reliable

last-resort treatment for bacterial infections.

Furthermore, presenting fewer adverse effects,

they are safer to use than other last-line

drugs such as the polymyxins. For these rea-

sons, the emergence and rapid spread through

all continents of carbapenem resistance, mainly

among Gram-negative bacteria, constitutes a

global public-healthcare problem of major

importance.

Carbapenem-resistance determinants
It is noteworthy that resistance to carbapenems in

some species is intrinsic. This is the case for

example of Stenotrophomonas maltophilia that pos-

sesses the endogenous metallo-beta-lactamase

(MBL) L1 [Sánchez, 2015], therefore the use

of carbapenem antibiotics as a treatment for

such infections is not considered. Intrinsic resist-

ance to carbapenems, however, is not common

among clinically important bacteria and for

most of them carbapenem resistance is acquired

by mutational events or gene acquisition via hori-

zontal gene transfer.

Gram-positive bacteria become resistant to

carbapenems and other beta-lactams through

mutation-derived changes of their PBPs, while

Gram-negatives commonly recruit other mech-

anisms to overcome the effect of carbapenem

antibiotics. Certain species are able to prevent

carbapenems reaching their PBPs by diminishing

the permeability of their outer membrane. OprD

for example, is an outer membrane porin of

Pseudomonas aeruginosa through which carbape-

nems enter its periplasmic space where PBPs

are located [Bonomo and Szabo, 2006].

Consequently, the diminished expression or loss

of this porin leads to carbapenem resistance with-

out concurrent resistance to other beta-lactams.

A different mechanism that may contribute to

carbapenem resistance is the active expulsion of

carbapenems out of the periplasmic space after

their entrance. This is mediated by tripartite

efflux pump systems composed of a protein
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transporter of the cytoplasmic membrane, a

periplasmic connective protein and an outer

membrane porin [Schweizer, 2003]. Efflux

pumps use energy in the form of proton motive

force to transport various drugs and other

substances out of the bacterial cell. The overex-

pression of efflux pumps that expel carbapenems,

mostly meropenem, may lead to carbapenem

resistance associated with multidrug resistance

(MDR), since quinolones, penicillins, cephalo-

sporins and aminoglycosides are common efflux

pump substrates [Meletis et al. 2012].

Enzyme-mediated resistance to carbapenems is

due to the production of beta-lactamases that

are able to inactivate carbapenems together with

other beta-lactam antibiotics and therefore called

carbapenemases [Walsh, 2010; Poirel et al.

2007]. This type of resistance is the most import-

ant clinically because these enzymes hydrolyze all

or almost all beta-lactams, confer high levels of

carbapenem minimum inhibitory concentrations

(MICs), are encoded by genes that are horizon-

tally transferable by plasmids or transposons and

are commonly associated with genes encoding for

other resistance determinants.

All beta-lactamases are categorized into four

molecular classes according to the Ambler classi-

fication [Ambler, 1980]. Among them, the class

A enzymes KPC [Rapp and Urban, 2012],

GES/IBC [Poirel et al. 2000; Giakkoupi et al.

2000], IMI/NMC-A [Walther-Rasmussen and

Høiby, 2007], SFC-1 [Henriques et al. 2004],

the class B MBLs IMP [Zhao and Hu, 2011b],

VIM [Zhao and Hu, 2011a], NDM [Nordmann

et al. 2011], SPM [Rossi, 2011], GIM

[Castanheira et al. 2004], SIM [Lee et al.

2005], AIM [Yong et al. 2012], DIM [Poirel

et al. 2010], FIM [Pollini et al. 2013], POM

[Borgianni et al. 2015], and several class D

(OXA-type) enzymes [Walther-Rasmussen and

Høiby, 2006], possess the ability to hydrolyze at

least partially a carbapenem antibiotic. Class C

enzymes are not considered carbapenemases. It

has been shown however that they possess a low

potential of carbapenem hydrolysis and their

overproduction may contribute to carbapenem

resistance combined with diminished outer-

membrane permeability and/or efflux pump over-

expression [Quale et al. 2006].

The most effective carbapenemases, in terms of

carbapenem hydrolysis and geographical spread,

are KPC, VIM, IMP, NDM and OXA-48 types

[Poirel et al. 2012]. KPCs inactivate all beta-

lactam antibiotics and are only partially inhibited

by beta-lactamase inhibitors like clavulanic acid,

tazobactam and boronic acid. MBLs are able to

hydrolyze all beta-lactams except aztreonam and

are not inhibited by the aforementioned inhibi-

tors. They bear zinc in their active centre, there-

fore their inhibition is achieved in vitro using

metal chelators, such as ethylenediaminetetraace-

tic acid.

Treatment options against
carbapenem-resistant bacteria
While for Gram-positives there are still reliable

alternatives to carbapenems (e.g. glycopeptides,

daptomycin), carbapenem resistance in Gram-

negative pathogens is dramatically limiting

treatment options. Carbapenemase-producing

Gram-negatives in particular are resistant to all

or almost all beta-lactams, while commonly bear-

ing at the same time genes encoding for resistance

mechanisms against fluoroquinolones and/or ami-

noglycosides. Therefore, older agents, such as

polymyxins and fosfomycin, which were rarely

implemented in the past because of efficacy and/

or toxicity concerns, together with the newer tige-

cycline, have become last-resort choices.

Based on the laboratory’s antimicrobial suscepti-

bility report, clinicians have to choose between

the following schemes: (a) monotherapy using

one of the possibly still active in vitro agents

(these may be colistin, gentamycin, tigecycline

and fosfomycin); (b) combination therapy with-

out a carbapenem; (c) combination therapy with

two or more drugs including at least one carba-

penem, preferably when the carbapenem’s MIC

is� 4 mg/L [Miyakis et al. 2011] (this last option

is considered as the most effective in terms of

mortality according to the currently available stu-

dies [Tzouvelekis et al. 2014]).

Obviously, the involvement of previously almost

abandoned antibiotics is not ideal. Even though

the neurotoxicity of colistin has been questioned

lately [Morrill et al. 2015], nephrotoxicity is a

certain serious complication as it occurs in

more than 40% of patients treated with poly-

myxins [Akajagbor et al. 2013].

Fosfomycin reaches high urinary concentrations

for prolonged time periods and may be used

against urinary tract infections [Kitchel et al.

2009; Peirano et al. 2011]. Its intravenous

administration as monotherapy however in cases

Therapeutic Advances in Infectious Disease 3 (1)

16 http://tai.sagepub.com



of systemic infections may be problematic

because of the potential for resistance develop-

ment during treatment [Falagas et al. 2010].

Likewise, and despite the fact that many carbape-

nemase producers are susceptible in vitro to tige-

cycline, resistance to this drug is increasing rapidly

[Sader et al. 2014]. Moreover, there are not

enough data to support its effectiveness for infec-

tions caused by carbapenem-resistant bacteria

when used as monotherapy [Morrill et al. 2015].

Global spread of carbapenemases
Even though the existence of carbapenemases has

been known for more than 20 years, their origin

or probable physiological role are not yet known.

IMP-1 was the first carbapenemase and the first

MBL to be detected in 1991 in Japan [Watanabe

et al. 1991], whereas VIM-1 was discovered later

in 1997 in Verona, Italy [Lauretti et al. 1999].

Both IMP- and VIM-type enzymes have success-

fully spread to all continents since then [Walsh

et al. 2005]. SPM was found in 2002 in Sao

Paulo, Brazil causing serious outbreaks [Queenam

and Bush, 2007], but remains mostly confined in

South America. GIM, SIM, AIM, DIM, FIM and

POM were reported only sporadically to date in

contrast with NDM, which presented a spectacular

global spread since its detection in 2008 in India

[Yong et al. 2009]. NDM-producing microorgan-

isms have been isolated with high frequency in

healthcare facilities and environmental niches in

the Indian subcontinent and disseminated through

patient transfer or colonized travellers in Europe,

North America, the Far East and Australia [Dortet

et al. 2014]. Worryingly, a second probable epi-

centre seems to be located in the central Balkans

without any obvious connection to that of India

[Meletis et al. 2014a].

Among the class A carbapenem-hydrolyzing

enzymes, KPCs presented the most rapid

and geographically extended dissemination

[Nordmann et al. 2009]. First found in the late

1990s in the New York City area in the USA

[Yigit et al. 2001], they soon spread to bordering

states [Endimiani et al. 2009], Latin America

[Villegas et al. 2006], and Israel [Leavitt et al.

2007]. From there, they most probably entered

neighbouring countries and through Greece to

the rest of Europe, where its prevalence is high

in southern countries but fortunately still remains

low in northern ones. Another significant epi-

centre of KPC-encoding genes may be China,

even though not enough data are known to

assess its actual dissemination in that country

[Tzouvelekis et al. 2012].

The main foci for OXA-48 producing bacteria

are considered to be the Middle East [Carrër

et al. 2010] and North Africa [Cuzon et al.

2010], however, isolations in Europe [Potron

et al. 2011], Turkey [Carrër et al. 2008], India

[Castanheira et al. 2011], Senegal [Moquet

et al. 2011], and Argentina [Poirel et al. 2011],

indicate an important global spread for this car-

bapenemase type as well.

Reasons for the emergence and spread
of carbapenem resistance
Antibiotic resistance is a phenomenon that fol-

lows antibiotic discovery and its main cause

relies on the spectacular adaptability of bacteria

to selective pressure. Indeed, bacteria are able to

mutate promptly, to acquire genes horizontally

and to ‘collect’ the necessary mechanisms for

their survival if subjected to harmful factors.

Practically, resistance has emerged to all antibiotics

used until now after a variable time period from

their implementation and carbapenems are not

the exception. It is reasonable however to consider

that starting from the emergence of carbapenem

resistance until its widespread dissemination,

some human-related factors are playing a crucial

role. These are mainly: (a) immoderate antibiotic

prescription combined with the uncontrolled

public access to antibiotics in many countries

with poor sales regulations; (b) the lack of infection

control measures in healthcare facilities once car-

bapenem resistance has emerged; (c) the use of

subtherapeutic doses of antibiotics for the promo-

tion of animal growth in the agricultural sector.

Future perspectives
Carbapenem resistance in Gram-negative bacteria,

especially when carbapenemases are involved, is

the main contributing factor for MDR and usually

the definitive step before pandrug resistance

(PDR). Indeed, resistance to other last-resort

drugs among carbapenemase producers may rap-

idly emerge when these agents are necessarily used

in healthcare settings [Meletis et al. 2015b].

Moreover, it has been shown that carbapenem-

resistant Gram-negative nosocomial pathogens

will continue to evolve accumulating more carbape-

nem-resistance mechanisms [Meletis et al. 2014b],

or more than one carbapenemase-encoding gene

[Meletis et al. 2015a]. This will lead in many cases

G Meletis
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to increased carbapenem MICs ruling out the

best-to-date therapeutic choice against carbapene-

mase producers, which is the combined treatment

including at least one carbapenem.

At this pace, untreatable infections could emerge

on a large scale and the world may experience in

some cases dramatic situations of the pre-antibio-

tic era. Already, clinicians in endemic areas

routinely encounter patients with infections that

do not respond to available treatments and

laboratories often report MDR or even PDR bac-

teria. In the USA alone, 2 million people acquire

serious infections due to antibiotic-resistant bac-

teria each year and according to the Centers for

Disease Control and Prevention (CDC), 23,000

of them die as a result [CDC, 2013].

It is obvious that novel antibiotics are urgently

needed. However, this is not easy. Pharmaceutical

companies have to invest a great deal of money and

time to scientific research and, even when they do,

only one out of five drugs that reach the initial

phase of testing in humans will receive approval

from the US Food and Drug Administration

[Hay et al. 2014]. Moreover, the development of

antibiotics against MDR bacteria is not as profit-

able as developing drugs for other medical areas

such as cancer or diabetes because only a relatively

small number of patients contract such infections

and these of course are not treated for long time

periods [Meletis, 2014].

Despite the difficulties though, a new compound,

ceftazidime-avibactam has been made available

recently [Zasowski et al. 2015]. This drug is a

combination of ceftazidime with a novel beta-lac-

tamase inhibitor able to inhibit ESBLs, AmpC

and class A carbapenemases including KPCs,

but not MBLs. Although ceftazidime-avibactam

is an important and promising addition to the

antimicrobial armamentarium, resistance has

already been observed in KPC-3-producing

Klebsiella pneumoniae and Enterobacter cloacae

in vitro [Livermore et al. 2015], and reported in

a KPC-3-expressing K. pneumoniae clinical iso-

late [Humphries et al. 2015].

Conclusion
Despite some serious efforts, mainly from indus-

trialized countries, a definite solution to the prob-

lem still seems to be far off. Several parts of the

world are already endemic for carbapenemase-

encoding genes while the situation in others

including the central Balkans and many African

and Asian countries is not well documented.

Until a reliable alternative to carbapenems is

found or the presence of carbapenemases effect-

ively overcome, the rationalization of antibiotic

use in both humans and animals, the application

of strict infection control measures whenever car-

bapenem resistance is detected and the active

surveillance for the presence of carbapenemase-

encoding genes are of the outmost importance.
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