Summary of Recommendations: Guidelines for the Prevention of Intravascular Catheter-related Infections Naomi P. O'Grady, Mary Alexander, Lillian A. Burns, E. Patchen Dellinger, Jeffrey Garland, Stephen O. Heard, Pamela A. Lipsett, Henry Masur, Leonard A. Mermel, Michele L. Pearson, Issam I. Raad, Adrienne G. Randolph, Mark E. Rupp, Sanjay Saint, and the Healthcare Infection Control Practices Advisory Committee (HICPAC) (Appendix 1) ¹Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland; ²Infusion Nurses Society, Norwood, Massachusetts; ³Staten Island University Hospital, Staten Island, New York; ⁴Department of Surgery, University of Washington, Seattle, Washington; ⁵Department of Pediatrics, Wheaton Franciscan Healthcare-St. Joseph, Milwaukee, Wisconsin; ⁶Department of Anesthesiology, University of Massachusetts Medical School, Worcester, Massachusetts; ¬Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; ¬Bivision of Infectious Diseases, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island; ¬Office of Infectious Diseases, CDC, Atlanta, Georgia; ¬Opepartment of Infectious Diseases, MD Anderson Cancer Center, Houston, Texas; ¬Department of Anesthesiology, The Children's Hospital, Boston, Massachusetts; ¬Pepartment of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; and ¬Pepartment of Internal Medicine, Ann Arbor VA Medical Center and University of Michigan, Ann Arbor, Michigan These guidelines have been developed for healthcare personnel who insert intravascular catheters and for persons responsible for surveillance and control of infections in hospital, outpatient, and home healthcare settings. This report was prepared by a working group comprising members from professional organizations representing the disciplines of critical care medicine, infectious diseases, healthcare infection control, surgery, anesthesiology, interventional radiology, pulmonary medicine, pediatric medicine, and nursing. The working group was led by the Society of Critical Care Medicine (SCCM), in collaboration with the Infectious Diseases Society of America (IDSA), Society for Healthcare Epidemiology of America (SHEA), Surgical Infection Society (SIS), American College of Chest Physicians (ACCP), American Thoracic Society (ATS), American Society of Critical Care Anesthesiologists (ASCCA), Association for Professionals in Infection Control and Epidemiology (APIC), Infusion Nurses Society (INS), Oncology Nursing Society (ONS), American Society for Parenteral and Enteral Nutrition (ASPEN), Society of Interventional Radiology (SIR), American Academy of Pediatrics (AAP), Pediatric Infectious Diseases Society (PIDS), and the Healthcare Infection Control Practices Advisory Committee (HICPAC) of the Centers for Disease Control and Prevention (CDC) and is intended to replace the Guideline for Prevention of Intravascular Catheter-Related Infections published in 2002. These guidelines are intended to provide evidence-based recommendations for preventing intravascular catheter-related infections. Major areas of emphasis include 1) educating and training healthcare personnel who insert and maintain catheters; 2) using maximal sterile barrier precautions during central venous catheter insertion; 3) using a > 0.5% chlorhexidine skin preparation with alcohol for antisepsis; 4) avoiding routine replacement of central venous catheters as a strategy to prevent infection; and 5) using antiseptic/ antibiotic impregnated short-term central venous catheters and chlorhexidine impregnated sponge dressings if the rate of infection is not decreasing despite adherence to other strategies (i.e, education and training, maximal sterile barrier precautions, and >0.5% chlorhexidine preparations with alcohol for skin antisepsis). These guidelines also emphasize performance improvement by implementing bundled strategies, and documenting and reporting rates of compliance with all components of the bundle as benchmarks for quality assurance and performance improvement. As in previous guidelines issued by CDC and HIC-PAC, each recommendation is categorized on the basis Received 31 January 2011; accepted 4 February 2011. Correspondence: Naomi P. O'Grady, MD, Critical Care Medicine Department, National Institutes of Health, Building 10, Room 2C145, Center Drive MSC 1662 Bethesda, MD 20892 (nogrady@mail.cc.nih.gov). #### Clinical Infectious Diseases 2011;52(9):1087-1099 Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2011. 1058-4838/2011/529-0001\$37.00 DOI: 10.1093/cid/cir138 of existing scientific data, theoretical rationale, applicability, and economic impact. The system for categorizing recommendations in this guideline is as follows: - Category IA. Strongly recommended for implementation and strongly supported by well-designed experimental, clinical, or epidemiologic studies. - Category IB. Strongly recommended for implementation and supported by some experimental, clinical, or epidemiologic studies and a strong theoretical rationale; or an accepted practice (e.g., aseptic technique) supported by limited evidence. - Category IC. Required by state or federal regulations, rules, or standards. - Category II. Suggested for implementation and supported by suggestive clinical or epidemiologic studies or a theoretical rationale. - Unresolved issue. Represents an unresolved issue for which evidence is insufficient or no consensus regarding efficacy exists. #### **INTRODUCTION** In the United States, 15 million central vascular catheter (CVC) days (i.e, the total number of days of exposure to CVCs among all patients in the selected population during the selected time period) occur in intensive care units (ICUs) each year [1]. Studies have variously addressed catheter-related bloodstream infections (CRBSI). These infections independently increase hospital costs and length of stay [2-5], but have not generally been shown to independently increase mortality. While 80,000 CRBSIs occur in ICUs each year [1], a total of 250,000 cases of BSIs have been estimated to occur annually, if entire hospitals are assessed [6]. By several analyses, the cost of these infections is substantial, both in terms of morbidity and financial resources expended. To improve patient outcome and to reduce healthcare costs, there is considerable interest by healthcare providers, insurers, regulators, and patient advocates in reducing the incidence of these infections. This effort should be multidisciplinary, involving healthcare professionals who order the insertion and removal of CVCs, those personnel who insert and maintain intravascular catheters, infection control personnel, healthcare managers including the chief executive officer (CEO) and those who allocate resources, and patients who are capable of assisting in the care of their catheters. The goal of an effective prevention program should be the elimination of CRBSI from all patient-care areas. Although this is challenging, programs have demonstrated success, but sustained elimination requires continued effort. The goal of the measures discussed in this document is to reduce the rate to as low as feasible given the specific patient population being served, the universal presence of microorganisms in the human environment, and the limitations of current strategies and technologies. #### **SUMMARY OF RECOMMENDATIONS** #### **Education, Training and Staffing** - 1. Educate healthcare personnel regarding the indications for intravascular catheter use, proper procedures for the insertion and maintenance of intravascular catheters, and appropriate infection control measures to prevent intravascular catheter-related infections [7–15]. Category IA - 2. Periodically assess knowledge of and adherence to guidelines for all personnel involved in the insertion and maintenance of intravascular catheters [7–15]. Category IA - 3. Designate only trained personnel who demonstrate competence for the insertion and maintenance of peripheral and central intravascular catheters. [14–28]. Category IA - 4. Ensure appropriate nursing staff levels in ICUs Observational studies suggest that a higher proportion of "pool nurses" or an elevated patient—to-nurse ratio is associated with CRBSI in ICUs where nurses are managing patients with CVCs [29–31]. Category IB ### Selection of Catheters and Sites #### Peripheral Catheters and Midline Catheters - 1. In adults, use an upper-extremity site for catheter insertion. Replace a catheter inserted in a lower extremity site to an upper extremity site as soon as possible. Category II - 2. In pediatric patients, the upper or lower extremities or the scalp (in neonates or young infants) can be used as the catheter insertion site [32, 33]. Category II - 3. Select catheters on the basis of the intended purpose and duration of use, known infectious and non-infectious complications (e.g., phlebitis and infiltration), and experience of individual catheter operators [33–35]. Category IB - 4. Avoid the use of steel needles for the administration of fluids and medication that might cause tissue necrosis if extravasation occurs [33, 34]. Category IA - 5. Use a midline catheter or peripherally inserted central catheter (PICC), instead of a short peripheral catheter, when the duration of IV therapy will likely exceed six days. Category II - 6. Evaluate the catheter insertion site daily by palpation through the dressing to discern tenderness and by inspection if a transparent dressing is in use. Gauze and opaque dressings should not be removed if the patient has no clinical signs of infection. If the patient has local tenderness or other signs of possible CRBSI, an opaque dressing should be removed and the site inspected visually. Category II - 7. Remove peripheral venous catheters if the patients develops signs of phlebitis (warmth, tenderness, erythema or palpable venous cord), infection, or a malfunctioning catheter [36]. Category IB #### Central Venous Catheters. - 1. Weigh the risks and benefits of placing a central venous device at a recommended site to reduce infectious complications against the risk for mechanical complications (e.g., pneumothorax, subclavian artery puncture, subclavian vein laceration, subclavian vein stenosis, hemothorax, thrombosis, air embolism, and catheter misplacement) [37–53]. Category IA - 2. Avoid using the femoral vein for central venous access in adult patients [38, 50, 51, 54]. Category 1A - 3. Use a subclavian site, rather than a jugular or a femoral site, in adult patients to minimize infection risk for nontunneled CVC placement [50–52]. Category IB - 4. No recommendation can be made for a preferred site of insertion to minimize infection risk for a tunneled CVC. Unresolved issue - 5. Avoid the subclavian site in hemodialysis patients and patients with advanced kidney disease, to avoid subclavian vein stenosis [53,55–58]. Category IA - 6. Use a fistula or graft in patients with chronic renal failure instead of a CVC for permanent access for dialysis [59]. Category 1A - 7. Use ultrasound guidance to place central venous catheters (if this technology is available) to reduce the number of cannulation attempts and mechanical complications. Ultrasound guidance should only be used by those fully trained in its technique. [60–64]. Category 1B - 8. Use a CVC with the minimum number of ports or lumens essential for the management of the patient [65–68]. Category IB - 9. No recommendation can be made regarding the use of a designated lumen for parenteral nutrition. Unresolved issue - 10. Promptly remove any intravascular catheter that is no longer essential [69–72]. Category IA - 11. When adherence to aseptic technique cannot be ensured (i.e catheters inserted during a medical emergency), replace the catheter as soon as possible, i.e, within 48 hours [37,73–76]. Category IB #### Hand Hygiene and Aseptic Technique - 1. Perform hand hygiene procedures, either by washing hands with conventional soap and water or with alcohol-based hand rubs (ABHR). Hand hygiene should be performed before and after palpating catheter insertion sites as well as before and after inserting, replacing, accessing, repairing, or dressing an intravascular catheter. Palpation of the insertion site should not be performed after the application of antiseptic, unless aseptic technique is maintained [12,77–79]. Category IB - 2. Maintain aseptic technique for the insertion and care of intravascular catheters [37, 73, 74, 76]. Category IB - 3. Wear clean gloves, rather than sterile gloves, for the insertion of peripheral intravascular catheters, if the access site is not touched after the application of skin antiseptics. Category IC - 4. Sterile gloves should be worn for the insertion of arterial, central, and midline catheters [37, 73, 74, 76]. Category IA - 5. Use new sterile gloves before handling the new catheter when guidewire exchanges are performed. Category II - 6. Wear either clean or sterile gloves when changing the dressing on intravascular catheters. Category IC #### **Maximal Sterile Barrier Precautions** - 1. Use maximal sterile barrier precautions, including the use of a cap, mask, sterile gown, sterile gloves, and a sterile full body drape, for the insertion of CVCs, PICCs, or guidewire exchange [14, 75, 76, 80]. Category IB - 2. Use a sterile sleeve to protect pulmonary artery catheters during insertion [81]. Category IB #### **Skin Preparation** - 1. Prepare clean skin with an antiseptic (70% alcohol, tincture of iodine, an iodophor or chlorhexidine gluconate) before peripheral venous catheter insertion [83]. Category IB - 2. Prepare clean skin with a >0.5% chlorhexidine preparation with alcohol before central venous catheter and peripheral arterial catheter insertion and during dressing changes. If there is a contraindication to chlorhexidine, tincture of iodine, an iodophor, or 70% alcohol can be used as alternatives [83, 84]. Category IA - 3. No comparison has been made between using chlorhexidine preparations with alcohol and povidone-iodine in alcohol to prepare clean skin. Unresolved issue. - 4. No recommendation can be made for the safety or efficacy of chlorhexidine in infants aged <2 months. Unresolved issue - 5. Antiseptics should be allowed to dry according to the manufacturer's recommendation prior to placing the catheter [83, 84]. Category IB #### **Catheter Site Dressing Regimens** - 1. Use either sterile gauze or sterile, transparent, semipermeable dressing to cover the catheter site [85–88]. Category IA - 2. If the patient is diaphoretic or if the site is bleeding or oozing, use gauze dressing until this is resolved [85–88]. Category II - 3. Replace catheter site dressing if the dressing becomes damp, loosened, or visibly soiled [84, 85]. Category IB - 4. Do not use topical antibiotic ointment or creams on insertion sites, except for dialysis catheters, because of their potential to promote fungal infections and antimicrobial resistance [89, 90]. Category IB - 5. Do not submerge the catheter or catheter site in water. Showering should be permitted if precautions can be taken to reduce the likelihood of introducing organisms into the catheter (e.g., if the catheter and connecting device are protected with an impermeable cover during the shower) [91–93]. Category IB - 6. Replace dressings used on short-term CVC sites every 2 days for gauze dressings. Category II - 7. Replace dressings used on short-term CVC sites at least every 7 days for transparent dressings, except in those pediatric patients in which the risk for dislodging the catheter may outweigh the benefit of changing the dressing [88, 94]. Category IB - 8. Replace transparent dressings used on tunneled or implanted CVC sites no more than once per week (unless the dressing is soiled or loose), until the insertion site has healed. Category II - 9. No recommendation can be made regarding the necessity for any dressing on well-healed exit sites of long-term cuffed and tunneled CVCs. Unresolved issue - 10. Ensure that catheter site care is compatible with the catheter material [95, 96]. Category IB - 11. Use a sterile sleeve for all pulmonary artery catheters [81]. Category IB - 12. Use a chlorhexidine-impregnated sponge dressing for temporary short-term catheters in patients older than 2 months of age if the CLABSI rate is not decreasing despite adherence to basic prevention measures, including education and training, appropriate use of chlorhexidine for skin antisepsis, and MSB [94, 97–99]. Category 1B - 13. No recommendation is made for other types of chlorhexidine dressings. Unresolved issue - 14. Monitor the catheter sites visually when changing the dressing or by palpation through an intact dressing on a regular basis, depending on the clinical situation of the individual patient. If patients have tenderness at the insertion site, fever without obvious source, or other manifestations suggesting local or bloodstream infection, the dressing should be removed to allow thorough examination of the site [100–102]. Category IB - 15. Encourage patients to report any changes in their catheter site or any new discomfort to their provider. Category II #### **Patient Cleansing** Use a 2% chlorhexidine wash for daily skin cleansing to reduce CRBSI [103–105]. Category II #### **Catheter Securement Devices** Use a sutureless securement device to reduce the risk of infection for intravascular catheters [106]. Category II #### **Antimicrobial/Antiseptic Impregnated Catheters and Cuffs** Use a chlorhexidine/silver sulfadiazine or minocycline/rifampin -impregnated CVC in patients whose catheter is expected to remain in place >5 days if, after successful implementation of a comprehensive strategy to reduce rates of CLABSI, the CLABSI rate is not decreasing. The comprehensive strategy should include at least the following three components: educating persons who insert and maintain catheters, use of maximal sterile barrier precautions, and a >0.5% chlorhexidine preparation with alcohol for skin antisepsis during CVC insertion [107–114]. Category IA #### **Systemic Antibiotic Prophylaxis** Do not administer systemic antimicrobial prophylaxis routinely before insertion or during use of an intravascular catheter to prevent catheter colonization or CRBSI [115]. Category IB #### **Antibiotic/Antiseptic Ointments** Use povidone iodine antiseptic ointment or bacitracin/gramicidin/polymyxin B ointment at the hemodialysis catheter exit site after catheter insertion and at the end of each dialysis session only if this ointment does not interact with the material of the hemodialysis catheter per manufacturer's recommendation [59, 115–119]. Category IB # Antibiotic Lock Prophylaxis, Antimicrobial Catheter Flush and Catheter Lock Prophylaxis Use prophylactic antimicrobial lock solution in patients with long term catheters who have a history of multiple CRBSI despite optimal maximal adherence to aseptic technique [120–138]. Category II #### **Anticoagulants** Do not routinely use anticoagulant therapy to reduce the risk of catheter-related infection in general patient populations [139]. Category II #### **Replacement of Peripheral and Midline Catheters** - 1. There is no need to replace peripheral catheters more frequently than every 72-96 hours to reduce risk of infection and phlebitis in adults [36, 140, 141]. Category 1B - 2. No recommendation is made regarding replacement of peripheral catheters in adults only when clinically indicated [142–144]. Unresolved issue - 3. Replace peripheral catheters in children only when clinically indicated [32, 33]. Category 1B - 4. Replace midline catheters only when there is a specific indication. Category II ## Replacement of CVCs, Including PICCs and Hemodialysis Catheters - 1. Do not routinely replace CVCs, PICCs, hemodialysis catheters, or pulmonary artery catheters to prevent catheter-related infections. Category IB - 2. Do not remove CVCs or PICCs on the basis of fever alone. Use clinical judgment regarding the appropriateness of removing the catheter if infection is evidenced elsewhere or if a noninfectious cause of fever is suspected. Category II - 3. Do not use guidewire exchanges routinely for non-tunneled catheters to prevent infection. Category IB - 4. Do not use guidewire exchanges to replace a non-tunneled catheter suspected of infection. Category IB - 5. Use a guidewire exchange to replace a malfunctioning non-tunneled catheter if no evidence of infection is present. Category IB - 6. Use new sterile gloves before handling the new catheter when guidewire exchanges are performed. Category II #### **Umbilical Catheters** - 1. Remove and do not replace umbilical artery catheters if any signs of CRBSI, vascular insufficiency in the lower extremeties, or thrombosis are present [145]. Category II - 2. Remove and do not replace umbilical venous catheters if any signs of CRBSI or thrombosis are present [145]. Category II - 3. No recommendation can be made regarding attempts to salvage an umbilical catheter by administering antibiotic treatment through the catheter. Unresolved issue - 4. Cleanse the umbilical insertion site with an antiseptic before catheter insertion. Avoid tincture of iodine because of the potential effect on the neonatal thyroid. Other iodinecontaining products (e.g., povidone iodine) can be used [146–150]. Category IB - 5. Do not use topical antibiotic ointment or creams on umbilical catheter insertion sites because of the potential to promote fungal infections and antimicrobial resistance [89, 90]. Category IA - 6. Add low-doses of heparin (0.25–1.0 U/ml) to the fluid infused through umbilical arterial catheters [151–153]. Category IB - 7. Remove umbilical catheters as soon as possible when no longer needed or when any sign of vascular insufficiency to the lower extremities is observed. Optimally, umbilical artery catheters should not be left in place >5 days [145, 154]. Category II - 8. Umbilical venous catheters should be removed as soon as possible when no longer needed, but can be used up to 14 days if managed aseptically [155, 156]. Category II - 9. An umbilical catheter may be replaced if it is malfunctioning, and there is no other indication for catheter removal, and the total duration of catheterization has not exceeded 5 days for an umbilical artery catheter or 14 days for an umbilical vein catheter. Category II ## Peripheral Arterial Catheters and Pressure Monitoring Devices for Adult and Pediatric Patients 1. In adults, use of the radial, brachial or dorsalis pedis sites is preferred over the femoral or axillary sites of insertion to reduce the risk of infection [46, 47, 157, 158]. Category IB - 2. In children, the brachial site should not be used. The vradial, dorsalis pedis, and posterior tibial sites are preferred over the femoral or axillary sites of insertion [46]. Category II - 3. A minimum of a cap, mask, sterile gloves and a small sterile fenestrated drape should be used during peripheral arterial catheter insertion [47, 158, 159]. Category IB - 4. During axillary or femoral artery catheter insertion, maximal sterile barriers precautions should be used. Category II - 5. Replace arterial catheters only when there is a clinical indication. Category II - 6. Remove the arterial catheter as soon as it is no longer needed. Category II - 7. Use disposable, rather than reusable, transducer assemblies when possible [160–164]. Category IB - 8. Do not routinely replace arterial catheters to prevent catheter-related infections [165, 166, 167, 168]. Category II - 9. Replace disposable or reusable transducers at 96-hour intervals. Replace other components of the system (including the tubing, continuous-flush device, and flush solution) at the time the transducer is replaced [37, 161]. Category IB - 10. Keep all components of the pressure monitoring system (including calibration devices and flush solution) sterile [160, 169–171]. Category IA - 11. Minimize the number of manipulations of and entries into the pressure monitoring system. Use a closed flush system (i.e, continuous flush), rather than an open system (i.e, one that requires a syringe and stopcock), to maintain the patency of the pressure monitoring catheters [163, 172]. Category II - 12. When the pressure monitoring system is accessed through a diaphragm, rather than a stopcock, scrub the diaphragm with an appropriate antiseptic before accessing the system [163]. Category IA - 13. Do not administer dextrose-containing solutions or parenteral nutrition fluids through the pressure monitoring circuit [163, 173, 174]. Category IA - 14. Sterilize reusable transducers according to the manufacturers' instructions if the use of disposable transducers is not feasible [163, 173–176]. Category IA #### **Replacement of Administration Sets** - 1. In patients not receiving blood, blood products or fat emulsions, replace administration sets that are continuously used, including secondary sets and add-on devices, no more frequently than at 96-hour intervals, [177] but at least every 7 days [178–181]. Category IA - 2. No recommendation can be made regarding the frequency for replacing intermittently used administration sets. Unresolved issue - 3. No recommendation can be made regarding the frequency for replacing needles to access implantable ports. Unresolved issue - 4. Replace tubing used to administer blood, blood products, or fat emulsions (those combined with amino acids and glucose in a 3-in-1 admixture or infused separately) within 24 hours of initiating the infusion [182–185]. Category IB - 5. Replace tubing used to administer propofol infusions every 6 or 12 hours, when the vial is changed, per the manufacturer's recommendation (FDA website Medwatch) [186]. Category IA - 6. No recommendation can be made regarding the length of time a needle used to access implanted ports can remain in place. Unresolved issue #### **Needleless Intravascular Catheter Systems** - 1. Change the needleless components at least as frequently as the administration set. There is no benefit to changing these more frequently than every 72 hours. [39, 187–193]. Category II - 2. Change needleless connectors no more frequently than every 72 hours or according to manufacturers' recommendations for the purpose of reducing infection rates [187, 189, 192, 193]. Category II - 3. Ensure that all components of the system are compatible to minimize leaks and breaks in the system [194]. Category II - 4. Minimize contamination risk by scrubbing the access port with an appropriate antiseptic (chlorhexidine, povidone iodine, an iodophor, or 70% alcohol) and accessing the port only with sterile devices [189, 192, 194–196]. Category IA - 5. Use a needleless system to access IV tubing. Category IC - 6. When needleless systems are used, a split septum valve may be preferred over some mechanical valves due to increased risk of infection with the mechanical valves [197–200]. Category II #### **Performance Improvement** Use hospital-specific or collaborative-based performance improvement initiatives in which multifaceted strategies are "bundled" together to improve compliance with evidence-based recommended practices [15, 69, 70, 201–205]. Category IB #### **Acknowledgments** Notice to Readers. In 2009, the Centers for Disease Control and Prevention (CDC) and Healthcare Infection Control Practices Advisory Committee (HICPAC) integrated current advances in guideline production and implementation into its development process (http://www.cdc.gov/hicpac/guidelineMethod/guidelineMethod. html). The new methodology enables CDC and HICPAC to improve the validity and usability of its guidelines while also addressing emerging challenges in guideline development in the area of infection prevention and control. However, the Guidelines for the Prevention of Intravascular Catheter-Related Infections were initiated before the methodology was revised. Therefore, this guideline reflects the development methods that were used for guidelines produced prior to 2009. Future revisions will be performed using the updated methodology. Financial support. E.P.D. Grant support through the NIH. Potential conflicts of interest. N.P.O.'G. served as a board member for the ABIM Subspecialty Board for Critical Care Medicine. M.A. is an employee of the Infusion Nurses Society, Honoraria from 3M, Becton Dickinson, Smiths Medical. L.A.B. is a consultant for Institute of Healthcare Improvement, Board membership for Theradoc, Medline. Honoraria from APIC, Clorox. E.P.D. consulting from Merck, Baxter, Ortho-McNeil, Targanta, Schering-Plough, Optimer, Cadence, Cardinal, BDGeneOhm, WebEx, Cerebrio, and Tyco. Grant support through the NIH. Payment for lecture from Merck. Payment for development of educational presentation from Medscape. Travel and meeting expenses paid for by ASHP, IDSA, ASM, American College of Surgeons, NQF, SHEA/CDC, HHS, Trauma Shock Inflammation and Sepsis Meeting (Munich), University of Minnesota. J.G. Honoria from Ethicon. S.O.H. provides research support from Angiotech; Honoraria from Angiotech, Merck. L.A.M provides research support from Astellas, Theravance, Pfizer; Consulting for Ash Access, Cadence, CorMedix, Catheter Connections, Carefusion, Sage, Bard, Teleflex; Payment for manuscript preparation from Catheter Connections. I.I.R. provides research support from Cubist, Enzon, and Basilea; Consulting for Clorox; Stock Equity or Options in Great Lakes Pharmaceuticals and Inventive Protocol; Speakers Bureau for Cook, Inc.; Royalty income (patents owned by MD Anderson on which Dr. Raad in an inventor: American Medical Systems, Cook, Inc., Cook urological, Teleflex, TyRx, Medtronic, Biomet, Great Lakes Pharmaceuticals. A.R. consulting income from Eisai Pharmaceuticals, Discovery Laboratories. M.E.R. provides research support from Molnlycke, Cardinal Healthcare Foundation, Sanofi-Pasteur, 3M, and Cubist; Consulting from Semprus; Honorarium for lectures from 3M, Carefusion, Baxter and Becton Dickinson. Previously served on Board of Directors for Society for Healthcare Epidemiology of America. All other authors: no conflicts. ## Healthcare Infection Control Practices Advisory Committee (HICPAC) #### Chairman BRENNAN, Patrick J., MD Chief Medical Officer Division of Infectious Diseases University of Pennsylvania Health System #### Membership BRATZLER, Dale, DO, MPH President and CEO Oklahoma Foundation for Medical Quality BURNS, Lillian A., MT, MPH Infection Control Coordinator Greenwich Hospital, Infectious Diseases Department ELWARD, Alexis, MD Assistant Professor, Pediatrics Infectious Diseases Washington University School of Medicine Department of Pediatrics Division of Infectious Diseases HUANG, Susan, MD, MPH Assistant Professor, Medical Director, Epidemiology and Infection Prevention Division of Infectious Diseases, UC Irvine School of Medicine LUNDSTROM, Tammy, MD, JD Chief Medical Officer Providence Hospital MCCARTER, Yvette S., PhD Director, Clinical Microbiology Laboratory Department of Pathology University of Florida Health Science Center MURPHY, Denise M. RN, MPH, CIC Vice President, Quality and Patient Safety Main Line Health System #### **Executive Secretary** BELL, Michael R., MD Deputy Director Division of Healthcare Quality Promotion Centers for Disease Control and Prevention OSTROFF, Stephen, MD Director, Bureau of Epidemiology Pennsylvania Department of Health OLMSTED, Russell N., MPH, CIC Epidemiologist Infection Control Services St. Joseph Mercy Health System PEGUES, David Alexander, MD Professor of Medicine, Hospital Epidemiologist David Geffen School of Medicine at UCLA PRONOVOST, Peter J., MD, PhD, FCCM Director, Johns Hopkins Quality and Safety Research Group Johns Hopkins Quality and Safety Research Group SOULE, Barbara M., RN, MPA, CIC Practice Leader Infection Prevention and Control Services Joint Commission Resources/Joint Commission International SCHECTER, William, P., MD Professor of Surgery Department of Surgery San Francisco General Hospital #### **Ex-officio Members** Agency for Healthcare Research and Quality (AHRQ) BAINE, William B., MD Senior Medical Advisor Center for Outcomes and Evidence Center for Medicare & Medicaid Services (CMS) MILLER, Jeannie, RN, MPH Deputy Director, Office of Clinical Standards and Quality #### Food and Drug Administration (FDA) MURPHEY, Sheila A., MD Branch Chief, Infection Control Devices Division of Anesthesiology, General Hospital Infection Control Dental Devices Center for Devices and Radiology Health #### Liaisons Advisory Council for the Elimination of Tuberculosis (ACET) STRICOF, Rachel L., MPH New York State Department of Health ### American College of Occupational and **Environmental Medicine** RUSSI, Mark, MD, MPH Professor of Medicine Yale University School of Medicine Director, Occupational Health Yale-New Haven Hospital #### American Health Care Assn (AHCA) FITZLER, Sandra L., RN Senior Director of Clinical Services #### American Hospital Association (AHA) SCHULMAN, Roslyne, MHA, MBA Director, Policy Development Association of Professionals of Infection Control and Epidemiology, Inc. (APIC) DeBAUN, Barbara, MSN, RN, CIC # Association of periOperative Registered Nursed (AORN) BLANCHARD, Joan C., RN, BSN #### Council of State and Territorial Epidemiologists (CSTE) KAINER, Marion MD, MPH Director, Hospital Infections and Antimicrobial Resistance Program Tennessee Department Health #### National Institute of Health (NIH) HENDERSON, David, MD Deputy Director for Clinical Care Associate Director for Hospital Epidemiology and Quality Improvement NIH Clinical Center #### Department of Veterans Affairs (VA) ROSELLE, Gary A., MD National Program Director, Infectious Diseases VA Central Office Cincinnati VA Medical Center #### Consumers Union MCGIFFERT, Lisa Senior Policy Analyst on Health Issues Project Director Stop Hospital Infections Organization #### Infectious Disease Society of America (IDSA) Huskins, W. Charles MD, MSc Division of Pediatric Infectious Diseases Assistant Professor of Pediatrics Mayo Clinic #### Public Health Agency of Canada PATON, Shirley, RN, MN Senior Advisor Healthcare Acquired Infections Center for Communicable Diseases and Infection Control ### Society for Healthcare Epidemiology of America (SHEA) MARAGAKIS, Lisa, MD Assistant Professor of Medicine John Hopkins Medical Institutions #### Society of Hospital Medicine Saint, Sanjay, MD, MPH Director, Ann Arbor VA Medical Center/University of Michigan Patient Safety Enhancement Program #### The Joint Commission WISE, Robert A., MD Vice President Division of Standards & Survey Methods #### References - Mermel LA. Prevention of intravascular catheter-related infections. (Erratum: Ann Intern Med 133:395, 2000). Ann Intern Med 2000; 132:391–402. - Dimick JB, Pelz RK, Consunji R, Swoboda SM, Hendrix CW, Lipsett PA. Increased resource use associated with catheter-related bloodstream infection in the surgical intensive care unit. Arch Surg 2001; 136:229–34. - Warren DK, Quadir WW, Hollenbeak CS, Elward AM, Cox MJ, Fraser VJ. Attributable cost of catheter-associated bloodstream infections among intensive care patients in a nonteaching hospital. Crit Care Med 2006: 34:2084–9. - Blot SI, Depuydt P, Annemans L, et al. Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis 2005; 41:1591–8. - Renaud B, Brun-Buisson C. Outcomes of primary and catheterrelated bacteremia. A cohort and case-control study in critically ill patients. Am J Respir Crit Care Med 2001; 163:1584–90. - Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 2006; 81:1159–71. - 7. Yoo S, Ha M, Choi D, Pai H. Effectiveness of surveillance of central catheter-related bloodstream infection in an ICU in Korea. Infect Control Hosp Epidemiol **2001**; 22:433–6. - Warren DK, Zack JE, Cox MJ, Cohen MM, Fraser VJ. An educational intervention to prevent catheter-associated bloodstream infections in a non-teeaching community medical center. Crit Care Med 2003; 31:1959–63. - 9. Warren DK, Zack JE, Mayfield JL, et al. The effect of an education program on the incidence of central venous catheter- - associated bloodstream infection in a medical ICU. Chest 2004; 126:1612-8. - Warren DK, Cosgrove SE, Diekema DJ, et al. A multicenter intervention to prevent catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 2006; 27:662–9. - 11. Higuera F, Rosenthal VD, Duarte P, Ruiz J, Franco G, Safdar N. The effect of process control on the incidence of central venous catheter-associated bloodstream infections and mortality in intensive care units in Mexico. Crit Care Med 2005; 33:2022–7. - 12. Coopersmith CM, Rebmann TL, Zack JE, et al. Effect of an education program on decreasing catheter-related bloodstream infections in the surgical intensive care unit. Crit Care Med **2002**; 30:59–64. - Coopersmith CM, Zack JE, Ward MR, et al. The impact of bedside behavior on catheter-related bacteremia in the intensive care unit. Arch Surg 2004; 139:131–6. - Sherertz RJ, Ely EW, Westbrook DM, et al. Education of physiciansin-training can decrease the risk for vascular catheter infection. Ann Intern Med 2000; 132:641–8. - Eggimann P, Harbarth S, Constantin MN, Touveneau S, Chevrolet JC, Pittet D. Impact of a prevention strategy targeted at vascular-access care on incidence of infections acquired in intensive care. Lancet 2000; 355:1864–8. - Nehme AE. Nutritional support of the hospitalized patient. The team concept. JAMA 1980; 243:1906–8. - 17. Soifer NE, Borzak S, Edlin BR, Weinstein RA. Prevention of peripheral venous catheter complications with an intravenous therapy team: a randomized controlled trial. Arch Intern Med 1998; 158:473–7. - Tomford JW, Hershey CO, McLaren CE, Porter DK, Cohen DI. Intravenous therapy team and peripheral venous catheter-associated complications. A prospective controlled study. Arch Intern Med 1984; 144:1191–4. - Scalley RD, Van CS, Cochran RS. The impact of an i.v. team on the occurrence of intravenous-related phlebitis. A 30-month study. J Intraven Nurs 1992; 15:100–9. - Palefski SS, Stoddard GJ. The infusion nurse and patient complication rates of peripheral-short catheters. A prospective evaluation. J Intraven Nurs 2001; 24:113–23. - Miller JM, Goetz AM, Squier C, Muder RR. Reduction in nosocomial intravenous device-related bacteremias after institution of an intravenous therapy team. J Intraven Nurs 1996; 19:103 –6. - Hunter MR. Development of a Vascular Access Team in an acute care setting. J Infus Nurs 2003; 26:86–91. - Hawes ML. A proactive approach to combating venous depletion in the hospital setting. J Infus Nurs 2007; 30:33–44. - Brunelle D. Impact of a dedicated infusion therapy team on the reduction of catheter-related nosocomial infections. J Infus Nurs 2003; 26:362–6. - Bosma TL, Jewesson PJ. An infusion program resource nurse consult service: our experience in a major Canadian teaching hospital. J Infus Nurs 2002; 25:310–5. - 26. Pierce CA, Baker JJ. A nursing process model: quantifying infusion therapy resource consumption. J Infus Nurs 2004; 27:232–44. - 27. Tomford JW, Hershey CO. The i.v. therapy team: impact on patient care and costs of hospitalization. NITA 1985; 8:387–9. - Davis D, O'Brien MA, Freemantle N, Wolf FM, Mazmanian P, Taylor-Vaisey A. Impact of formal continuing medical education: do conferences, workshops, rounds, and other traditional continuing education activities change physician behavior or health care outcomes? JAMA 1999; 282:867–74. - Alonso-Echanove J, Edwards JR, Richards MJ, et al. Effect of nurse staffing and antimicrobial-impregnated central venous catheters on the risk for bloodstream infections in intensive care units. Infect Control Hosp Epidemiol 2003; 24:916–25. - Fridkin SK, Pear SM, Williamson TH, Galgiani JN, Jarvis WR. The role of understaffing in central venous catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 1996; 17:150–8. - Robert J, Fridkin SK, Blumberg HM, et al. The influence of the composition of the nursing staff on primary bloodstream infection rates in a surgical intensive care unit. Infect Control Hosp Epidemiol 2000; 21:12–7. - Maki DG, Goldman DA, Rhame FS. Infection control in intravenous therapy. Ann Intern Med 1973; 79:867–87. - Band JD, Maki DG. Steel needles used for intravenous therapy. Morbidity in patients with hematologic malignancy. Arch Intern Med 1980: 140:31–4. - Tully JL, Friedland GH, Baldini LM, Goldmann DA. Complications of intravenous therapy with steel needles and Teflon catheters. A comparative study. Am J Med 1981; 70:702–6. - Ryder MA. Peripheral access options. Surg Oncol Clin N Am 1995; 4:395–427 - Maki DG, Ringer M. Risk factors for infusion-related phlebitis with small peripheral venous catheters. A randomized controlled trial. Ann Intern Med 1991; 114:845–54. - Mermel LA, McCormick RD, Springman SR, Maki DG. The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med 1991; 91:1978–205. - Parienti JJ, Thirion M, Megarbane B, et al. Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA 2008; 299:2413–22. - Moretti EW, Ofstead CL, Kristy RM, Wetzler HP. Impact of central venous catheter type and methods on catheter-related colonization and bacteraemia. J Hosp Infect 2005; 61:139 –45. - Nagashima G, Kikuchi T, Tsuyuzaki H, et al. To reduce catheterrelated bloodstream infections: is the subclavian route better than the jugular route for central venous catheterization? J Infect Chemother 2006; 12:363–5. - 41. Ruesch S, Walder B, Tramer MR. Complications of central venous catheters: internal jugular versus subclavian access—a systematic review. Crit Care Med **2002**; 30:454—60. - Sadoyama G, Gontijo Filho PP. Comparison between the jugular and subclavian vein as insertion site for central venous catheters: microbiological aspects and risk factors for colonization and infection. Braz J Infect Dis 2003; 7:142–8. - 43. Heard SO, Wagle M, Vijayakumar E, et al. Influence of triple-lumen central venous catheters coated with chlorhexidine and silver sulfadiazine on the incidence of catheter-related bacteremia. Arch Intern Med 1998; 158:81–7. - 44. Richet H, Hubert B, Nitemberg G, et al. Prospective multicenter study of vascular-catheter-related complications and risk factors for positive central-catheter cultures in intensive care unit patients. J Clin Microbiol 1990; 28:2520–5. - 45. Safdar N, Kluger DM, Maki DG. A review of risk factors for catheterrelated bloodstream infection caused by percutaneously inserted, noncuffed central venous catheters: implications for preventive strategies. Medicine (Baltimore) 2002; 81:466–79. - Lorente L, Jimenez A, Iribarren JL, Jimenez JJ, Martin MM, Mora ML. The micro-organism responsible for central venous catheter related bloodstream infection depends on catheter site. Intensive Care Med 2006; 32:1449–50. - Traore O, Liotier J, Souweine B. Prospective study of arterial and central venous catheter colonization and of arterial- and central venous catheterrelated bacteremia in intensive care units. Crit Care Med 2005; 33:1276–80. - 48. Joynt GM, Kew J, Gomersall CD, Leung VY, Liu EK. Deep venous thrombosis caused by femoral venous catheters in critically ill adult patients. Chest 2000; 117:178–83. - Mian NZ, Bayly R, Schreck DM, Besserman EB, Richmand D. Incidence of deep venous thrombosis associated with femoral venous catheterization. Acad Emerg Med 1997; 4:1118–21. - Merrer J, De Jonghe B, Golliot F, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 2001; 286:700–7. - Goetz AM, Wagener MM, Miller JM, Muder RR. Risk of infection due to central venous catheters: effect of site of placement and catheter type. Infect Control Hosp Epidemiol 1998; 19:842-5 - Robinson JF, Robinson WA, Cohn A, Garg K, Armstrong JD, 2nd. Perforation of the great vessels during central venous line placement. Arch Intern Med 1995; 155:1225–8. - 53. Trottier SJ, Veremakis C, O'Brien J, Auer AI. Femoral deep vein thrombosis associated with central venous catheterization: results from a prospective, randomized trial. Crit Care Med **1995**; 23:52–9. - Lorente L, Henry C, Martin MM, Jimenez A, Mora ML. Central venous catheter-related infection in a prospective and observational study of 2,595 catheters. Crit Care 2005; 9:R631–5. - 55. Schillinger F, Schillinger D, Montagnac R, Milcent T. Post catheterisation vein stenosis in haemodialysis: comparative angiographic study of 50 subclavian and 50 internal jugular accesses. Nephrol Dial Transplant 1991; 6:722–4. - Cimochowski GE, Worley E, Rutherford WE, Sartain J, Blondin J, Harter H. Superiority of the internal jugular over the subclavian access for temporary dialysis. Nephron 1990; 54:154–61. - Barrett N, Spencer S, McIvor J, Brown EA. Subclavian stenosis: a major complication of subclavian dialysis catheters. Nephrol Dial Transplant 1988; 3:423–5. - Trerotola SO, Kuhn-Fulton J, Johnson MS, Shah H, Ambrosius WT, Kneebone PH. Tunneled infusion catheters: increased incidence of symptomatic venous thrombosis after subclavian versus internal jugular venous access. Radiology 2000; 217:89–93. - National Kidney Foundation. III. NKF-K/DOQI Clinical Practice Guidelines for Vascular Access: update 2000. Am J Kidney Dis 2001; 37:S137–81. - Hind D, Calvert N, McWilliams R, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ 2003; 327:361. - Randolph AG, Cook DJ, Gonzales CA, Pribble CG. Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature. Crit Care Med 1996; 24:2053–8. - 62. Froehlich CD, Rigby MR, Rosenberg ES, et al. Ultrasound-guided central venous catheter placement decreases complications and decreases placement attempts compared with the landmark technique in patients in a pediatric intensive care unit. Crit Care Med 2009; 37:1090–6. - 63. Lamperti M, Caldiroli D, Cortellazzi P, et al. Safety and efficacy of ultrasound assistance during internal jugular vein cannulation in neurosurgical infants. Intensive Care Med 2008; 34:2100–5. - 64. Schweickert WD, Herlitz J, Pohlman AS, Gehlbach BK, Hall JB, Kress JP. A randomized, controlled trial evaluating postinsertion neck ultrasound in peripherally inserted central catheter procedures. Crit Care Med 2009; 37:1217–21. - Clark-Christoff N, Watters VA, Sparks W, Snyder P, Grant JP. Use of triple-lumen subclavian catheters for administration of total parenteral nutrition. JPEN J Parenter Enteral Nutr 1992; 16:403–7. - Early TF, Gregory RT, Wheeler JR, Snyder SO Jr., Gayle RG. Increased infection rate in double-lumen versus single-lumen Hickman catheters in cancer patients. South Med J 1990; 83:34–6. - 67. Hilton E, Haslett TM, Borenstein MT, Tucci V, Isenberg HD, Singer C. Central catheter infections: single- versus triple-lumen catheters. Influence of guide wires on infection rates when used for replacement of catheters. Am J Med 1988; 84:667–72. - Yeung C, May J, Hughes R. Infection rate for single lumen v triple lumen subclavian catheters. Infect Control Hosp Epidemiol 1988; 9:154 –8. - Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 2006; 355:2725–32. - 70. Berenholtz SM, Pronovost PJ, Lipsett PA, et al. Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med **2004**; 32:2014–20. - 71. Lederle FA, Parenti CM, Berskow LC, Ellingson KJ. The idle intravenous catheter. Ann Intern Med 1992; 116:737–8. - Parenti CM, Lederle FA, Impola CL, Peterson LR. Reduction of unnecessary intravenous catheter use. Internal medicine house staff participate in a successful quality improvement project. Arch Intern Med 1994; 154:1829–32. - Abi-Said D, Raad I, Umphrey J, et al. Infusion therapy team and dressing changes of central venous catheters. Infect Control Hosp Epidemiol 1999; 20:101–5. - 74. Capdevila JA, Segarra A, Pahissa A. Catheter-related bacteremia in patients undergoing hemodialysis. Ann Intern Med 1998; 128:600. - Mermel LA, Maki DG. Infectious complications of Swan-Ganz pulmonary artery catheters. Pathogenesis, epidemiology, prevention, and management. Am J Respir Crit Care Med 1994; 149:1020–36. - Raad II, Hohn DC, Gilbreath BJ, et al. Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 1994; 15:231–8. - Boyce JM, Pittet D. Guideline for hand hygiene in health-care settings: recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Infect Control Hosp Epidemiol 2002; 23:S3–40. - Bischoff WE, Reynolds TM, Sessler CN, Edmond MB, Wenzel RP. Handwashing compliance by health care workers: the impact of introducing an accessible, alcohol-based hand antiseptic. Arch Intern Med 2000; 160:1017–21. - 79. Pittet D, Dharan S, Touveneau S, Sauvan V, Perneger TV. Bacterial contamination of the hands of hospital staff during routine patient care. Arch Intern Med 1999; 159:821–6. - Carrer S, Bocchi A, Bortolotti M, et al. Effect of different sterile barrier precautions and central venous catheter dressing on the skin colonization around the insertion site. Minerva Anestesiol 2005; 71:197–206. - 81. Cohen Y, Fosse JP, Karoubi P, et al. The "hands-off" catheter and the prevention of systemic infections associated with pulmonary artery catheter: a prospective study. Am J Respir Crit Care Med 1998; 157:284–7. - Maki DG, Ringer M, Alvarado CJ. Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet 1991: 338:339–43. - 83. Mimoz O, Pieroni L, Lawrence C, et al. Prospective, randomized trial of two antiseptic solutions for prevention of central venous or arterial catheter colonization and infection in intensive care unit patients. Crit Care Med 1996; 24:1818–23. - 84. Maki DG, Stolz SS, Wheeler S, Mermel LA. A prospective, randomized trial of gauze and two polyurethane dressings for site care of pulmonary artery catheters: implications for catheter management. Crit Care Med **1994**; 22:1729–37. - 85. Bijma R, Girbes AR, Kleijer DJ, Zwaveling JH. Preventing central venous catheter-related infection in a surgical intensive-care unit. Infect Control Hosp Epidemiol 1999; 20:618–20. - 86. Madeo M, Martin CR, Turner C, Kirkby V, Thompson DR. A randomized trial comparing Arglaes (a transparent dressing containing silver ions) to Tegaderm (a transparent polyurethane dressing) for dressing peripheral arterial catheters and central vascular catheters. Intensive Crit Care Nurs 1998; 14:187–91. - 87. Rasero L, Degl'Innocenti M, Mocali M, et al. Comparison of two different time interval protocols for central venous catheter dressing in bone marrow transplant patients: results of a randomized, multicenter study. The Italian Nurse Bone Marrow Transplant Group (GITMO). Haematologica 2000; 85:275–9. - Zakrzewska-Bode A, Muytjens HL, Liem KD, Hoogkamp-Korstanje JA. Mupirocin resistance in coagulase-negative staphylococci, after topical prophylaxis for the reduction of colonization of central venous catheters. J Hosp Infect 1995; 31:189–93. - 89. Flowers RH, Schwenzer KJ, Kopel RF, Fisch MJ, Tucker SI, Farr BM. Efficacy of an attachable subcutaneous cuff for the prevention of in- - travascular catheter-related infection. A randomized, controlled trial. IAMA 1989: 261:878–83. - Robbins J, Cromwell P, Korones DN. Swimming and central venous catheter-related infections in the child with cancer. J Pediatr Oncol Nurs 1999; 16:51–6. - 91. Howell PB, Walters PE, Donowitz GR, Farr BM. Risk factors for infection of adult patients with cancer who have tunnelled central venous catheters. Cancer 1995; 75:1367–75. - 92. Ivy DD, Calderbank M, Wagner BD, et al. Closed-hub systems with protected connections and the reduction of risk of catheter-related bloodstream infection in pediatric patients receiving intravenous prostanoid therapy for pulmonary hypertension. Infect Control Hosp Epidemiol 2009; 30:823–9. - Timsit JF, Schwebel C, Bouadma L, et al. Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheterrelated infections in critically ill adults: a randomized controlled trial. JAMA 2009; 301:1231–41. - 94. Rao SP, Oreopoulos DG. Unusual complications of a polyurethane PD catheter. Perit Dial Int **1997**; 17:410–2. - Riu S, Ruiz CG, Martinez-Vea A, Peralta C, Oliver JA. Spontaneous rupture of polyurethane peritoneal catheter. A possible deleterious effect of mupirocin ointment. Nephrol Dial Transplant 1998; 13:1870–1. - Garland JS, Alex CP, Mueller CD, et al. A randomized trial comparing povidone-iodine to a chlorhexidine gluconate-impregnated dressing for prevention of central venous catheter infections in neonates. Pediatrics 2001; 107:1431–6. - Ho KM, Litton E. Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. J Antimicrob Chemother 2006; 58:281–7. - Levy I, Katz J, Solter E, et al. Chlorhexidine-impregnated dressing for prevention of colonization of central venous catheters in infants and children: a randomized controlled study. Pediatr Infect Dis J 2005; 24:676–9. - Lorenzen AN, Itkin DJ. Surveillance of infection in home care. Am J Infect Control 1992; 20:326–9. - White MC. Infections and infection risks in home care settings. Infect Control Hosp Epidemiol 1992; 13:535–9. - White MC, Ragland KE. Surveillance of intravenous catheter-related infections among home care clients. Am J Infect Control 1994; 22:231–5. - 102. Bleasdale SC, Trick WE, Gonzalez IM, Lyles RD, Hayden MK, Weinstein RA. Effectiveness of chlorhexidine bathing to reduce catheter-associated bloodstream infections in medical intensive care unit patients. Arch Intern Med 2007; 167:2073–9. - 103. Munoz-Price LS, Hota B, Stemer A, Weinstein RA. Prevention of bloodstream infections by use of daily chlorhexidine baths for patients at a long-term acute care hospital. Infect Control Hosp Epidemiol **2009**; 30:1031–5. - 104. Popovich KJ, Hota B, Hayes R, Weinstein RA, Hayden MK. Effectiveness of routine patient cleansing with chlorhexidine gluconate for infection prevention in the medical intensive care unit. Infect Control Hosp Epidemiol 2009; 30:959–63. - 105. Yamamoto AJ, Solomon JA, Soulen MC, et al. Sutureless securement device reduces complications of peripherally inserted central venous catheters. J Vasc Interv Radiol 2002; 13:77–81. - 106. Brun-Buisson C, Doyon F, Sollet JP, Cochard JF, Cohen Y, Nitenberg G. Prevention of intravascular catheter-related infection with newer chlorhexidine-silver sulfadiazine-coated catheters: a randomized controlled trial. Intensive Care Med 2004; 30:837–43. - 107. Ostendorf T, Meinhold A, Harter C, et al. Chlorhexidine and silversulfadiazine coated central venous catheters in haematological patients—a double-blind, randomised, prospective, controlled trial. Support Care Cancer 2005; 13:993–1000. - 108. Rupp ME, Lisco SJ, Lipsett PA, et al. Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: a randomized, controlled trial. Ann Intern Med 2005; 143:570–80. - Darouiche RO, Raad II, Heard SO, et al. A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med 1999; 340:1–8. - 110. Raad I, Darouiche R, Dupuis J, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, doubleblind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med 1997; 127:267–74. - 111. Hanna H, Benjamin R, Chatzinikolaou I, et al. Long-term silicone central venous catheters impregnated with minocycline and rifampin decrease rates of catheter-related bloodstream infection in cancer patients: a prospective randomized clinical trial. J Clin Oncol 2004; 22:3163–71. - 112. Bhutta A, Gilliam C, Honeycutt M, et al. Reduction of bloodstream infections associated with catheters in paediatric intensive care unit: stepwise approach. BMJ 2007; 334:362–5. - 113. Chelliah A, Heydon KH, Zaoutis TE, et al. Observational trial of antibiotic-coated central venous catheters in critically ill pediatric patients. Pediatr Infect Dis J 2007; 26:816–20. - 114. van de Wetering MD, van Woensel JBM. Prophylactic antibiotics for preventing early central venous catheter Gram positive infections in oncology patients. Cochrane Database of Systematic Reviews 2007; Issue 1. Art. No.: CD003295. DOI: 10.1002/14651858.CD003295.pub2. - 115. Maki DG, Band JD. A comparative study of polyantibiotic and iodophorointments in prevention of vascular catheter-related infection. Am J Med 1981; 70:739–44. - 116. Fukunaga A, Naritaka H, Fukaya R, Tabuse M, Nakamura T. Povidoneiodine ointment and gauze dressings associated with reduced catheterrelated infection in seriously ill neurosurgical patients. Infect Control Hosp Epidemiol 2004; 25:696–8. - 117. Johnson DW, MacGinley R, Kay TD, et al. A randomized controlled trial of topical exit site mupirocin application in patients with tunnelled, cuffed haemodialysis catheters. Nephrol Dial Transplant 2002; 17:1802–7. - Fong IW. Prevention of haemodialysis and peritoneal dialysis catheter related infection by topical povidone-iodine. Postgrad Med J 1993; 69(Suppl 3):S15–7. - Levin A, Mason AJ, Jindal KK, Fong IW, Goldstein MB. Prevention of hemodialysis subclavian vein catheter infections by topical povidoneiodine. Kidney Int 1991; 40:934–8. - Schwartz C, Henrickson KJ, Roghmann K, Powell K. Prevention of bacteremia attributed to luminal colonization of tunneled central venous catheters with vancomycin-susceptible organisms. J Clin Oncol 1990; 8:1591–7. - 121. Rackoff WR, Weiman M, Jakobowski D, et al. A randomized, controlled trial of the efficacy of a heparin and vancomycin solution in preventing central venous catheter infections in children. J Pediatr 1995; 127:147–51. - 122. Carratala J, Niubo J, Fernandez-Sevilla A, et al. Randomized, double-blind trial of an antibiotic-lock technique for prevention of gram-positive central venous catheter-related infection in neutropenic patients with cancer. Antimicrob Agents Chemother 1999; 43:2200–4. - 123. Jurewitsch B, Lee T, Park J, Jeejeebhoy K. Taurolidine 2% as an antimicrobial lock solution for prevention of recurrent catheter-related bloodstream infections. J Parenter Enteral Nutr 1998; 22:242–4. - 124. Henrickson KJ, Axtell RA, Hoover SM, et al. Prevention of central venous catheter-related infections and thrombotic events in immunocompromised children by the use of vancomycin/ciprofloxacin/ heparin flush solution: a randomized, multicenter, double-blind trial. J Clin Oncol 2000; 18:1269–78. - 125. Garland JS, Alex CP, Henrickson KJ, McAuliffe TL, Maki DG. A vancomycin-heparin lock solution for prevention of nosocomial bloodstream infection in critically ill neonates with peripherally inserted central venous catheters: a prospective, randomized trial. Pediatrics 2005; 116:e198–205. - Daghistani D, Horn M, Rodriguez Z, Schoenike S, Toledano S. Prevention of indwelling central venous catheter sepsis. Med Pediatr Oncol 1996; 26:405–8. - 127. Barriga FJ, Varas M, Potin M, et al. Efficacy of a vancomycin solution to prevent bacteremia associated with an indwelling central venous catheter in neutropenic and non-neutropenic cancer patients. Med Pediatr Oncol 1997; 28:196–200. - 128. Dogra GK, Herson H, Hutchison B, et al. Prevention of tunneled hemodialysis catheter-related infections using catheter-restricted filling with gentamicin and citrate: a randomized controlled study. J Am Soc Nephrol **2002**; 13:2133–9. - Allon M. Prophylaxis against dialysis catheter-related bacteremia with a novel antimicrobial lock solution. Clin Infect Dis 2003; 36:1539–44. - Elhassan NO, Stevens TP, Gigliotti F, Hardy DJ, Cole CA, Sinkin RA. Vancomycin usage in central venous catheters in a neonatal intensive care unit. Pediatr Infect Dis J 2004; 23:201–6. - McIntyre CW, Hulme LJ, Taal M, Fluck RJ. Locking of tunneled hemodialysis catheters with gentamicin and heparin. Kidney Int 2004; 66:801–5. - Betjes MG, van Agteren M. Prevention of dialysis catheter-related sepsis with a citrate-taurolidine-containing lock solution. Nephrol Dial Transplant 2004; 19:1546–1. - 133. Weijmer MC, van den Dorpel MA, Van de Ven PJ, et al. Randomized, clinical trial comparison of trisodium citrate 30% and heparin as catheter-locking solution in hemodialysis patients. J Am Soc Nephrol 2005: 16:7769–77. - 134. Bleyer AJ, Mason L, Russell G, Raad II, Sherertz RJ. A randomized, controlled trial of a new vascular catheter flush solution (minocycline-EDTA) in temporary hemodialysis access. Infect Control Hosp Epidemiol 2005; 26:520–4. - 135. Kim SH, Song KI, Chang JW, et al. Prevention of uncuffed hemodialysis catheter-related bacteremia using an antibiotic lock technique: a prospective, randomized clinical trial. Kidney Int 2006; 69:161–4 - Al-Hwiesh AK, Abdul-Rahman IS. Successful prevention of tunneled, central catheter infection by antibiotic lock therapy using vancomycin and gentamycin. Saudi J Kidney Dis Transpl 2007; 18:239–47. - 137. Nori US, Manoharan A, Yee J, Besarab A. Comparison of low-dose gentamicin with minocycline as catheter lock solutions in the prevention of catheter-related bacteremia. Am J Kidney Dis 2006; 48:596–605. - 138. Saxena AK, Panhotra BR, Sundaram DS, et al. Tunneled catheters' outcome optimization among diabetics on dialysis through antibiotic-lock placement. Kidney Int 2006; 70:1629–35. - Randolph AG, Cook DJ, Gonzales CA, Andrew M. Benefit of heparin in central venous and pulmonary artery catheters: a meta-analysis of randomized controlled trials. Chest 1998; 113:165–71. - 140. Tager IB, Ginsberg MB, Ellis SE, et al. An epidemiologic study of the risks associated with peripheral intravenous catheters. Am J Epidemiol 1983; 118:839–51. - 141. Lai KK. Safety of prolonging peripheral cannula and i.v. tubing use from 72 hours to 96 hours. Am J Infect Control **1998**; 26: 66–70. - 142. Van Donk P, Rickard CM, McGrail MR, Doolan G. Routine replacement versus clinical monitoring of peripheral intravenous catheters in a regional hospital in the home program: a randomized controlled trial. Infect Control Hosp Epidemiol 2009; 30:915–7. - 143. Webster J, Clarke S, Paterson D, et al. Routine care of peripheral intravenous catheters versus clinically indicated replacement: randomised controlled trial. BMJ 2008; 337:a339. - 144. Webster J, Osborne S, Rickard C, Hall J. Clinically-indicated replacement versus routine replacement of peripheral venous catheters. Cochrane Database Syst Rev 2010; 3:CD007798. - 145. Boo NY, Wong NC, Zulkifli SS, Lye MS. Risk factors associated with umbilical vascular catheter-associated thrombosis in newborn infants. J Paediatr Child Health 1999; 35:460–5. - 146. Garland JS, Buck RK, Maloney P, et al. Comparison of 10% povidoneiodine and 0.5% chlorhexidine gluconate for the prevention of peripheral intravenous catheter colonization in neonates: a prospective trial. Pediatr Infect Dis J 1995; 14:510–6. - 147. Krauss AN, Albert RF, Kannan MM. Contamination of umbilical catheters in the newborn infant. J Pediatr 1970; 77:965–9. - Landers S, Moise AA, Fraley JK, Smith EO, Baker CJ. Factors associated with umbilical catheter-related sepsis in neonates. Am J Dis Child 1991; 145:675–80. - 149. Cronin WA, Germanson TP, Donowitz LG. Intravascular catheter colonization and related bloodstream infection in critically ill neonates. Infect Control Hosp Epidemiol 1990; 11:301–8. - 150. Miller KL, Coen PE, White WJ, Hurst WJ, Achey BE, Lang CM. Effectiveness of skin absorption of tincture of I in blocking radioiodine from the human thyroid gland. Health Phys 1989; 56:911–4. - 151. Ankola PA, Atakent YS. Effect of adding heparin in very low concentration to the infusate to prolong the patency of umbilical artery catheters. Am J Perinatol 1993; 10:229–32. - 152. David RJ, Merten DF, Anderson JC, Gross S. Prevention of umbilical artery catheter clots with heparinized infusates. Dev Pharmacol Ther 1981; 2:117–26. - 153. Horgan MJ, Bartoletti A, Polansky S, Peters JC, Manning TJ, Lamont BM. Effect of heparin infusates in umbilical arterial catheters on frequency of thrombotic complications. J Pediatr 1987; 111:774–8. - 154. Fletcher MA, Brown DR, Landers S, Seguin J. Umbilical arterial catheter use: report of an audit conducted by the Study Group for Complications of Perinatal Care. Am J Perinatol 1994; 11:94–9. - 155. Seguin J, Fletcher MA, Landers S, Brown D, Macpherson T. Umbilical venous catheterizations: audit by the Study Group for Complications of Perinatal Care. Am J Perinatol 1994; 11:67–70. - 156. Loisel DB, Smith MM, MacDonald MG, Martin GR. Intravenous access in newborn infants: impact of extended umbilical venous catheter use on requirement for peripheral venous lines. J Perinatol 1996; 16:461–6. - 157. Martin C, Saux P, Papazian L, Gouin F. Long-term arterial cannulation in ICU patients using the radial artery or dorsalis pedis artery. Chest **2001**; 119:901–6. - 158. Koh DB, Gowardman JR, Rickard CM, Robertson IK, Brown A. Prospective study of peripheral arterial catheter infection and comparison with concurrently sited central venous catheters. Crit Care Med 2008; 36:397–402. - 159. Rijnders BJ, Van Wijngaerden E, Wilmer A, Peetermans WE. Use of full sterile barrier precautions during insertion of arterial catheters: a randomized trial. Clin Infect Dis 2003; 36:743–8. - Donowitz LG, Marsik FJ, Hoyt JW, Wenzel RP. Serratia marcescens bacteremia from contaminated pressure transducers. JAMA 1979; 242:1749–51. - 161. Luskin RL, Weinstein RA, Nathan C, Chamberlin WH, Kabins SA. Extended use of disposable pressure transducers. A bacteriologic evaluation. JAMA 1986; 255:916–20. - Maki DG, Hassemer CA. Endemic rate of fluid contamination and related septicemia in arterial pressure monitoring. Am J Med 1981; 70:733–8. - 163. Mermel LA, Maki DG. Epidemic bloodstream infections from hemodynamic pressure monitoring: signs of the times. Infect Control Hosp Epidemiol 1989; 10:47–53. - 164. Tenold R, Priano L, Kim K, Rourke B, Marrone T. Infection potential of nondisposable pressure transducers prepared prior to use. Crit Care Med 1987; 15:582–3. - 165. Eyer S, Brummitt C, Crossley K, Siegel R, Cerra F. Catheter-related sepsis: prospective, randomized study of three methods of long-term catheter maintenance. Crit Care Med 1990; 18:1073–9. - 166. Raad I, Umphrey J, Khan A, Truett LJ, Bodey GP. The duration of placement as a predictor of peripheral and pulmonary arterial catheter infections. J Hosp Infect **1993**; 23:17–26. - 167. Thomas F, Burke JP, Parker J, et al. The risk of infection related to radial vs femoral sites for arterial catheterization. Crit Care Med 1983; 11:807–12. - Leroy O, Billiau V, Beuscart C, et al. Nosocomial infections associated with long-term radial artery cannulation. Intensive Care Med 1989; 15:241–6. - 169. Fisher MC, Long SS, Roberts EM, Dunn JM, Balsara RK. Pseudomonas maltophilia bacteremia in children undergoing open heart surgery. JAMA 1981; 246:1571–4. - 170. Stamm WE, Colella JJ, Anderson RL, Dixon RE. Indwelling arterial catheters as a source of nosocomial bacteremia. An outbreak caused by Flavobacterium Species. N Engl J Med 1975; 292:1099–102. - 171. Weinstein RA, Emori TG, Anderson RL, Stamm WE. Pressure transducers as a source of bacteremia after open heart surgery. Report of an outbreak and guidelines for prevention. Chest **1976**; 69:338–44. - Shinozaki T, Deane RS, Mazuzan JE Jr., Hamel AJ, Hazelton D. Bacterial contamination of arterial lines. A prospective study. JAMA 1983: 249:223–5. - 173. Solomon SL, Alexander H, Eley JW, et al. Nosocomial fungemia in neonates associated with intravascular pressure-monitoring devices. Pediatr Infect Dis **1986**; 5:680–5. - 174. Weems JJ Jr., Chamberland ME, Ward J, Willy M, Padhye AA, Solomon SL. Candida parapsilosis fungemia associated with parenteral nutrition and contaminated blood pressure transducers. J Clin Microbiol 1987; 25:1029–32. - 175. Villarino ME, Jarvis WR, O'Hara C, Bresnahan J, Clark N. Epidemic of Serratia marcescens bacteremia in a cardiac intensive care unit. J Clin Microbiol **1989**; 27:2433–6. - 176. Beck-Sague CM, Jarvis WR, Brook JH, et al. Epidemic bacteremia due to Acinetobacter baumannii in five intensive care units. Am J Epidemiol 1990; 132:723–33. - 177. Gillies D, Wallen MM, Morrison AL, Rankin K, Nagy SA, O'Riordan E. Optimal timing for intravenous administration set replacement. Cochrane Database of Systematic Reviews **2005**; Issue 4. Art. No.: CD003588. DOI: 10.1002/14651858.CD003588.pub2. - 178. Sitges-Serra A, Linares J, Perez JL, Jaurrieta E, Lorente L. A randomized trial on the effect of tubing changes on hub contamination and catheter sepsis during parenteral nutrition. JPEN J Parenter Enteral Nutr 1985; 9:322–5. - 179. Snydman DR, Donnelly-Reidy M, Perry LK, Martin WJ. Intravenous tubing containing burettes can be safely changed at 72 hour intervals. Infect Control 1987; 8:113–6. - 180. Maki DG, Botticelli JT, LeRoy ML, Thielke TS. Prospective study of replacing administration sets for intravenous therapy at 48- vs 72hour intervals. 72 hours is safe and cost-effective. JAMA 1987; 258:1777–81. - 181. Josephson A, Gombert ME, Sierra MF, Karanfil LV, Tansino GF. The relationship between intravenous fluid contamination and the frequency of tubing replacement. Infect Control **1985**; 6:367–70. - 182. Melly MA, Meng HC, Schaffner W. Microbiol growth in lipid emulsions used in parenteral nutrition. Arch Surg 1975; 110:1479–81. - 183. Mershon J, Nogami W, Williams JM, Yoder C, Eitzen HE, Lemons JA. Bacterial/fungal growth in a combined parenteral nutrition solution. JPEN J Parenter Enteral Nutr 1986; 10:498–502. - 184. Gilbert M, Gallagher SC, Eads M, Elmore MF. Microbial growth patterns in a total parenteral nutrition formulation containing lipid emulsion. JPEN J Parenter Enteral Nutr 1986; 10:494–7. - 185. Maki DG, Martin WT. Nationwide epidemic of septicemia caused by contaminated infusion products. IV. Growth of microbial pathogens in fluids for intravenous infusions. J Infect Dis 1975; 131:267–72. - 186. Bennett SN, McNeil MM, Bland LA, et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med 1995; 333:147–54. - Arduino MJ, Bland LA, Danzig LE, McAllister SK, Aguero SM. Microbiologic evaluation of needleless and needle-access devices. Am J Infect Control 1997; 25:377–80. - Brown JD, Moss HA, Elliott TS. The potential for catheter microbial contamination from a needleless connector. J Hosp Infect 1997; 36:181–9 - 189. Cookson ST, Ihrig M, O'Mara EM, et al. Increased bloodstream infection rates in surgical patients associated with variation from recommended use and care following implementation of a needleless device. Infect Control Hosp Epidemiol 1998; 19:23–7. - Seymour VM, Dhallu TS, Moss HA, Tebbs SE, Elliot TS. A prospective clinical study to investigate the microbial contamination of a needleless connector. J Hosp Infect 2000; 45:165–8. - 191. Luebke MA, Arduino MJ, Duda DL, et al. Comparison of the microbial barrier properties of a needleless and a conventional needlebased intravenous access system. Am J Infect Control 1998; 26:437–41. - 192. McDonald LC, Banerjee SN, Jarvis WR. Line-associated bloodstream infections in pediatric intensive-care-unit patients associated with a needleless device and intermittent intravenous therapy. Infect Control Hosp Epidemiol 1998; 19:772–7. - 193. Mendelson MH, Short LJ, Schechter CB, et al. Study of a needleless intermittent intravenous-access system for peripheral infusions: analysis of staff, patient, and institutional outcomes. Infect Control Hosp Epidemiol 1998; 19:401–6. - 194. Do AN, Ray BJ, Banerjee SN, et al. Bloodstream infection associated with needleless device use and the importance of infectioncontrol practices in the home health care setting. J Infect Dis 1999; 179:442–8. - 195. Soothill JS, Bravery K, Ho A, Macqueen S, Collins J, Lock P. A fall in bloodstream infections followed a change to 2% chlorhexidine in 70% isopropanol for catheter connection antisepsis: a pediatric single center before/after study on a hemopoietic stem cell transplant ward. Am J Infect Control 2009; 37:626–30. - 196. Casey AL, Burnell S, Whinn H, Worthington T, Faroqui MH, Elliott TS. A prospective clinical trial to evaluate the microbial barrier of a needleless connector. J Hosp Infect 2007; 65:212–8. - 197. Rupp ME, Sholtz LA, Jourdan DR, et al. Outbreak of bloodstream infection temporally associated with the use of an intravascular needleless valve. Clin Infect Dis 2007; 44:1408–14. - 198. Salgado CD, Chinnes L, Paczesny TH, Cantey JR. Increased rate of catheter-related bloodstream infection associated with use of a needleless mechanical valve device at a long-term acute care hospital. Infect Control Hosp Epidemiol 2007; 28:684–8. - 199. Maragakis LL, Bradley KL, Song X, et al. Increased catheter-related bloodstream infection rates after the introduction of a new mechanical valve intravenous access port. Infect Control Hosp Epidemiol **2006**; 27:67–70. - 200. Field K, McFarlane C, Cheng AC, et al. Incidence of catheterrelated bloodstream infection among patients with a needleless, mechanical valve-based intravenous connector in an Australian hematology-oncology unit. Infect Control Hosp Epidemiol 2007; 28:610.3 - 201. Costello JM, Morrow DF, Graham DA, Potter-Bynoe G, Sandora TJ, Laussen PC. Systematic intervention to reduce central line-associated bloodstream infection rates in a pediatric cardiac intensive care unit. Pediatrics 2008; 121:915–23. - 202. Frankel HL, Crede WB, Topal JE, Roumanis SA, Devlin MW, Foley AB. Use of corporate Six Sigma performance-improvement strategies to reduce incidence of catheter-related blood-stream infections in a surgical ICU. J Am Coll Surg 2005; 201:349–58. - 203. Galpern D, Guerrero A, Tu A, Fahoum B, Wise L. Effectiveness of a central line bundle campaign on line-associated infections in the intensive care unit. Surgery 2008; 144:492–5; discussion 495. - 204. McKee C, Berkowitz I, Cosgrove SE, et al. Reduction of catheterassociated bloodstream infections in pediatric patients: experimentation and reality. Pediatr Crit Care Med 2008; 9:40–6. - Pronovost PJ, Berenholtz SM, Goeschel CA. Improving the quality of measurement and evaluation in quality improvement efforts. Am J Med Qual 2008; 23:143–6.